ﻻ يوجد ملخص باللغة العربية
Bent functions, which are maximally nonlinear Boolean functions with even numbers of variables and whose Hamming distance to the set of all affine functions equals $2^{n-1}pm 2^{frac{n}{2}-1}$, were introduced by Rothaus in 1976 when he considered problems in combinatorics. Bent functions have been extensively studied due to their applications in cryptography, such as S-box, block cipher and stream cipher. Further, they have been applied to coding theory, spread spectrum and combinatorial design. Hyper-bent functions, as a special class of bent functions, were introduced by Youssef and Gong in 2001, which have stronger properties and rarer elements. Many research focus on the construction of bent and hyper-bent functions. In this paper, we consider functions defined over $mathbb{F}_{2^n}$ by $f_{a,b}:=mathrm{Tr}_{1}^{n}(ax^{(2^m-1)})+mathrm{Tr}_{1}^{4}(bx^{frac{2^n-1}{5}})$, where $n=2m$, $mequiv 2pmod 4$, $ain mathbb{F}_{2^m}$ and $binmathbb{F}_{16}$. When $ain mathbb{F}_{2^m}$ and $(b+1)(b^4+b+1)=0$, with the help of Kloosterman sums and the factorization of $x^5+x+a^{-1}$, we present a characterization of hyper-bentness of $f_{a,b}$. Further, we use generalized Ramanujan-Nagell equations to characterize hyper-bent functions of $f_{a,b}$ in the case $ainmathbb{F}_{2^{frac{m}{2}}}$.
Let $mathbb{F}_{p^{n}}$ be the finite field with $p^n$ elements and $operatorname{Tr}(cdot)$ be the trace function from $mathbb{F}_{p^{n}}$ to $mathbb{F}_{p}$, where $p$ is a prime and $n$ is an integer. Inspired by the works of Mesnager (IEEE Trans.
Let $X^n$ be a uniformly distributed $n$-dimensional binary vector, and $Y^n$ be the result of passing $X^n$ through a binary symmetric channel (BSC) with crossover probability $alpha$. A recent conjecture postulated by Courtade and Kumar states that
In this paper, we investigate the power functions $F(x)=x^d$ over the finite field $mathbb{F}_{2^{4n}}$, where $n$ is a positive integer and $d=2^{3n}+2^{2n}+2^{n}-1$. It is proved that $F(x)=x^d$ is APcN at certain $c$s in $mathbb{F}_{2^{4n}}$, and
Differential uniformity is a significant concept in cryptography as it quantifies the degree of security of S-boxes respect to differential attacks. Power functions of the form $F(x)=x^d$ with low differential uniformity have been extensively studied
In this paper we present a new class of convolutional codes that admits an efficient al- gebraic decoding algorithm. We study some of its properties and show that it can decode interesting sequences of errors patterns. The second part of the paper is