ﻻ يوجد ملخص باللغة العربية
We present a theoretical and computational framework to compute the symmetry number of a flexible sphere cluster in $mathbb{R}^3$, using a definition of symmetry that arises naturally when calculating the equilibrium probability of a cluster of spheres in the sticky-sphere limit. We define the sticky symmetry group of the cluster as the set of permutations and
We develop the theory of anomalous elasticity in two-dimensional flexible materials with orthorhombic crystal symmetry. Remarkably, in the universal region, where characteristic length scales are larger than the rather small Ginzburg scale ${sim} 10,
We study a system of penetrable bosons embedded in a spherical surface. Under the assumption of weak interaction between the particles, the ground state of the system is, to a good approximation, a pure condensate. We employ thermodynamic arguments t
We study collections of self-propelled rods (SPR) moving in two dimensions for packing fractions less than or equal to 0.3. We find that in the thermodynamical limit the SPR undergo a phase transition between a disordered gas and a novel phase-separa
We study the origin of buoyancy forces acting on a larger particle moving in a granular medium subject to horizontal shaking and its corrections before fluidization. In the fluid limit Archimedes law is verified; before the limit memory effects count
Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here we choose a particular number