ﻻ يوجد ملخص باللغة العربية
We study the origin of buoyancy forces acting on a larger particle moving in a granular medium subject to horizontal shaking and its corrections before fluidization. In the fluid limit Archimedes law is verified; before the limit memory effects counteract buoyancy, as also found experimentally. The origin of the friction is an excluded volume effect between active particles, which we study more exactly for a random walker in a random environment. The same excluded volume effect is also responsible for the mutual attraction between bodies moving in the granular medium. Our theoretical modeling proceeds via an asymmetric exclusion process, i.e., via a dissipative lattice gas dynamics simulating the position degrees of freedom of a low density granular sea.
Newton viscosity law for the momentum flux and Fouriers law for the heat flux define Navier-Stokes hydrodynamics for a simple, one component fluid. There is ample evidence that a hydrodynamic description applies as well to a mesoscopic granular fluid
Large protein complexes are assembled from protein subunits to form a specific structure. In our theoretic work, we propose that assembly into the correct structure could be reliably achieved through an assembly line with a specific sequence of assem
Using Brownian Dynamics simulations, we study effective interactions mediated between two identical and impermeable disks (inclusions) immersed in a bath of identical, active (self-propelled), Brownian rods in two spatial dimensions, by assuming that
In this paper we present a new model for modeling the diffusion and relative dispersion of particles in homogeneous isotropic turbulence. We use an Heisenberg-like Hamiltonian to incorporate spatial correlations between fluid particles, which are mod
Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occ