ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual-Functional Radar-Communication Waveform Design: A Symbol-Level Precoding Approach

261   0   0.0 ( 0 )
 نشر من قبل Rang Liu
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Dual-functional radar-communication (DFRC) systems can simultaneously perform both radar and communication functionalities using the same hardware platform and spectrum resource. In this paper, we consider multi-input multi-output (MIMO) DFRC systems and focus on transmit beamforming designs to provide both radar sensing and multi-user communications. Unlike conventional block-level precoding techniques, we propose to use the recently emerged symbol-level precoding approach in DFRC systems, which provides additional degrees of freedom (DoFs) that guarantee preferable instantaneous transmit beampatterns for radar sensing and achieve better communication performance. In particular, the squared error between the designed and desired beampatterns is minimized subject to the quality-of-service (QoS) requirements of the communication users and the constant-modulus power constraint. Two efficient algorithms are developed to solve this non-convex problem on both the Euclidean and Riemannian spaces. The first algorithm employs penalty dual decomposition (PDD), majorization-minimization (MM), and block coordinate descent (BCD) methods to convert the original optimization problem into two solvable sub-problems, and iteratively solves them using efficient algorithms. The second algorithm provides a much faster solution at the price of a slight performance loss, first transforming the original problem into Riemannian space, and then utilizing the augmented Lagrangian method (ALM) to obtain an unconstrained problem that is subsequently solved via a Riemannian Broyden-Fletcher-Goldfarb-Shanno (RBFGS) algorithm. Extensive simulations verify the distinct advantages of the proposed symbol-level precoding designs in both radar sensing and multi-user communications.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the symbol-level precoding (SLP) design problem in the downlink of a multiuser multiple-input single-output (MISO) channel. We consider generic constellations with any arbitrary shape and size, and confine ourselves to o ne of the main categories of constructive interference regions (CIR), namely, distance preserving CIR (DPCIR). We provide a comprehensive study of DPCIRs and derive some properties for these regions. Using these properties, we first show that any signal in a given DPCIR has a norm greater than or equal to the norm of the corresponding constellation point if and only if the convex hull of the constellation contains the origin. It is followed by proving that the power of the noiseless received signal lying on a DPCIR is a monotonic strictly increasing function of two parameters relating to the infinite Voronoi edges. Using the convex description of DPCIRs and their properties, we formulate two design problems, namely, the SLP power minimization with signal-to-interference-plus-noise ratio (SINR) constraints, and the SLP SINR balancing problem under max-min fairness criterion. The SLP power minimization based on DPCIRs can straightforwardly be written as a quadratic program (QP). We provide a simplified reformulation of this problem which is less computationally complex. The SLP max-min SINR, however, is non-convex in its original form, and hence difficult to tackle. We propose several alternative optimization approaches, including semidefinite program (SDP) formulation and block coordinate descent (BCD) optimization. We discuss and evaluate the loss due to the proposed alternative methods through extensive simulation results.
96 - Rang Liu , Ming Li , Qian Liu 2020
Intelligent reflecting surfaces (IRS) have been proposed as a revolutionary technology owing to its capability of adaptively reconfiguring the propagation environment in a cost-effective and hardware-efficient fashion. While the application of IRS as a passive reflector to enhance the performance of wireless communications has been widely investigated in the literature, using IRS as a passive transmitter recently is emerging as a new concept and attracting steadily growing interest. In this paper, we propose two novel IRS-based passive information transmission systems using advanced symbol-level precoding. One is a standalone passive information transmission system, where the IRS operates as a passive transmitter serving multiple receivers by adjusting its elements to reflect unmodulated carrier signals. The other is a joint passive reflection and information transmission system, where the IRS not only enhances transmissions for multiple primary information receivers (PIRs) by passive reflection, but also simultaneously delivers additional information to a secondary information receiver (SIR) by embedding its information into the primary signals at the symbol level. Two typical optimization problems, i.e., power minimization and quality-of-service (QoS) balancing, are investigated for the proposed IRS-based passive information transmission systems. Simulation results demonstrate the feasibility of IRS-based passive information transmission and the effectiveness of our proposed algorithms, as compared to other benchmark schemes.
In this paper, we propose a novel waveform design for multi-input multi-output (MIMO) dual-functional radar-communication systems by taking the range sidelobe control into consideration. In particular, we focus on optimizing the weighted summation of communication and radar metrics under per-antenna power budget. While the formulated optimization problem is non-convex, we develop a first-order descent algorithm by exploiting the manifold structure of its feasible region, which finds a near-optimal solution within a low computational overhead. Numerical results show that the proposed waveform design outperforms the conventional techniques by improving the communication rate while reducing the range sidelobe level.
137 - Rang Liu , Hongyu Li , Ming Li 2019
Intelligent reflecting surface (IRS) has emerged as a promising solution to enhance wireless information transmissions by adaptively controlling prorogation environment. Recently, the brand-new concept of utilizing IRS to implement a passive transmit ter attracts researchers attention since it potentially realizes low-complexity and hardware-efficient transmitters of multiple-input single/multiple-output (MISO/MIMO) systems. In this paper we investigate the problem of precoder design for a low-resolution IRS-based transmitter to implement multi-user MISO/MIMO wireless communications. Particularly, the IRS modulates information symbols by varying the phases of its reflecting elements and transmits them to $K$ single-antenna or multi-antenna users. We first aim to design the symbol-level precoder for IRS to realize the modulation and minimize the maximum symbol-error-rate (SER) of single-antenna receivers. In order to tackle this NP-hard problem, we first relax the low-resolution phase-shift constraint and solve this problem by Riemannian conjugate gradient (RCG) algorithm. Then, the low-resolution symbol-level precoding vector is obtained by direct quantization. Considering the large quantization error for 1-bit resolution case, the branch-and-bound method is utilized to solve the 1-bit resolution symbol-level precoding vector. For multi-antenna receivers, we propose to iteratively design the symbol-level precoder and combiner by decomposing the original large-scale optimization problem into several sub-problems. Simulation results validate the effectiveness of our proposed algorithms.
In this letter, we study the optimal solution of the multiuser symbol-level precoding (SLP) for minimization of the total transmit power under given signal-to-interference-plus-noise ratio (SINR) constraints. Adopting the distance preserving construc tive interference regions (DPCIR), we first derive a simplified reformulation of the problem. Then, we analyze the structure of the optimal solution using the Karush-Kuhn-Tucker (KKT) optimality conditions, thereby we obtain the necessary and sufficient condition under which the power minimizer SLP is equivalent to the conventional zero-forcing beamforming (ZFBF). This further leads us to a closed-form sub-optimal SLP solution (CF-SLP) for the original problem. Simulation results show that CF-SLP provides significant gains over ZFBF, while performing quite close to the optimal SLP in scenarios with rather small number of users. The results further indicate that the CF-SLP method has a reduction of order $10^3$ in computational time compared to the optimal solution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا