ﻻ يوجد ملخص باللغة العربية
Dual-functional radar-communication (DFRC) systems can simultaneously perform both radar and communication functionalities using the same hardware platform and spectrum resource. In this paper, we consider multi-input multi-output (MIMO) DFRC systems and focus on transmit beamforming designs to provide both radar sensing and multi-user communications. Unlike conventional block-level precoding techniques, we propose to use the recently emerged symbol-level precoding approach in DFRC systems, which provides additional degrees of freedom (DoFs) that guarantee preferable instantaneous transmit beampatterns for radar sensing and achieve better communication performance. In particular, the squared error between the designed and desired beampatterns is minimized subject to the quality-of-service (QoS) requirements of the communication users and the constant-modulus power constraint. Two efficient algorithms are developed to solve this non-convex problem on both the Euclidean and Riemannian spaces. The first algorithm employs penalty dual decomposition (PDD), majorization-minimization (MM), and block coordinate descent (BCD) methods to convert the original optimization problem into two solvable sub-problems, and iteratively solves them using efficient algorithms. The second algorithm provides a much faster solution at the price of a slight performance loss, first transforming the original problem into Riemannian space, and then utilizing the augmented Lagrangian method (ALM) to obtain an unconstrained problem that is subsequently solved via a Riemannian Broyden-Fletcher-Goldfarb-Shanno (RBFGS) algorithm. Extensive simulations verify the distinct advantages of the proposed symbol-level precoding designs in both radar sensing and multi-user communications.
In this paper, we investigate the symbol-level precoding (SLP) design problem in the downlink of a multiuser multiple-input single-output (MISO) channel. We consider generic constellations with any arbitrary shape and size, and confine ourselves to o
Intelligent reflecting surfaces (IRS) have been proposed as a revolutionary technology owing to its capability of adaptively reconfiguring the propagation environment in a cost-effective and hardware-efficient fashion. While the application of IRS as
In this paper, we propose a novel waveform design for multi-input multi-output (MIMO) dual-functional radar-communication systems by taking the range sidelobe control into consideration. In particular, we focus on optimizing the weighted summation of
Intelligent reflecting surface (IRS) has emerged as a promising solution to enhance wireless information transmissions by adaptively controlling prorogation environment. Recently, the brand-new concept of utilizing IRS to implement a passive transmit
In this letter, we study the optimal solution of the multiuser symbol-level precoding (SLP) for minimization of the total transmit power under given signal-to-interference-plus-noise ratio (SINR) constraints. Adopting the distance preserving construc