ﻻ يوجد ملخص باللغة العربية
Quasi-Monte Carlo (QMC) method is a useful numerical tool for pricing and hedging of complex financial derivatives. These problems are usually of high dimensionality and discontinuities. The two factors may significantly deteriorate the performance of the QMC method. This paper develops an integrated method that overcomes the challenges of the high dimensionality and discontinuities concurrently. For this purpose, a smoothing method is proposed to remove the discontinuities for some typical functions arising from financial engineering. To make the smoothing method applicable for more general functions, a new path generation method is designed for simulating the paths of the underlying assets such that the resulting function has the required form. The new path generation method has an additional power to reduce the effective dimension of the target function. Our proposed method caters for a large variety of model specifications, including the Black-Scholes, exponential normal inverse Gaussian Levy, and Heston models. Numerical experiments dealing with these models show that in the QMC setting the proposed smoothing method in combination with the new path generation method can lead to a dramatic variance reduction for pricing exotic options with discontinuous payoffs and for calculating options Greeks. The investigation on the effective dimension and the related characteristics explains the significant enhancement of the combined procedure.
GPU computing has become popular in computational finance and many financial institutions are moving their CPU based applications to the GPU platform. Since most Monte Carlo algorithms are embarrassingly parallel, they benefit greatly from parallel i
Quasi-Monte Carlo methods are designed for integrands of bounded variation, and this excludes singular integrands. Several methods are known for integrands that become singular on the boundary of the unit cube $[0,1]^d$ or at isolated possibly unknow
Stochastic PDE eigenvalue problems often arise in the field of uncertainty quantification, whereby one seeks to quantify the uncertainty in an eigenvalue, or its eigenfunction. In this paper we present an efficient multilevel quasi-Monte Carlo (MLQMC
Multifidelity Monte Carlo methods rely on a hierarchy of possibly less accurate but statistically correlated simplified or reduced models, in order to accelerate the estimation of statistics of high-fidelity models without compromising the accuracy o
We introduce a new method for the numerical approximation of time-harmonic acoustic scattering problems stemming from material inhomogeneities. The method works for any frequency $omega$, but is especially efficient for high-frequency problems. It is