ﻻ يوجد ملخص باللغة العربية
We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretisation bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation techniques. Instead, our method uses standard time-discretised approximations of diffusions, such as the Euler--Maruyama scheme. Our approach is based on particle marginal Metropolis--Hastings, a particle filter, randomised multilevel Monte Carlo, and importance sampling type correction of approximate Markov chain Monte Carlo. The resulting estimator leads to inference without a bias from the time-discretisation as the number of Markov chain iterations increases. We give convergence results and recommend allocations for algorithm inputs. Our method admits a straightforward parallelisation, and can be computationally efficient. The user-friendly approach is illustrated on three examples, where the underlying diffusion is an Ornstein--Uhlenbeck process, a geometric Brownian motion, and a 2d non-reversible Langevin equation.
We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically in this paper, we carry out finite and infinite mixture model-based cluster
In this paper we present a novel method for estimating the parameters of a parametric diffusion processes. Our approach is based on a closed-form Maximum Likelihood estimator for an approximating Continuous Time Markov Chain (CTMC) of the diffusion p
We consider a pseudo-marginal Metropolis--Hastings kernel $P_m$ that is constructed using an average of $m$ exchangeable random variables, as well as an analogous kernel $P_s$ that averages $s<m$ of these same random variables. Using an embedding tec
This paper gives a method for computing distributions associated with patterns in the state sequence of a hidden Markov model, conditional on observing all or part of the observation sequence. Probabilities are computed for very general classes of pa
Orthogonal Generalized Autoregressive Conditional Heteroskedasticity model (OGARCH) is widely used in finance industry to produce volatility and correlation forecasts. We show that the classic OGARCH model, nevertheless, tends to be too slow in refle