ﻻ يوجد ملخص باللغة العربية
Orthogonal Generalized Autoregressive Conditional Heteroskedasticity model (OGARCH) is widely used in finance industry to produce volatility and correlation forecasts. We show that the classic OGARCH model, nevertheless, tends to be too slow in reflecting sudden changes in market condition due to excessive persistence of the integral univariate GARCH processes. To obtain more flexibility to accommodate abrupt market changes, e.g. financial crisis, we extend classic OGARCH model by incorporating a two-state Markov regime-switching GARCH process. This novel construction allows us to capture recurrent systemic regime shifts. Empirical results show that this generalization resolves the problem of excessive persistency effectively and greatly enhances OGARCHs ability to adapt to sudden market breaks while preserving OGARCHs most attractive features such as dimension reduction and multi-step ahead forecasting. By constructing a global minimum variance portfolio (GMVP), we are able to demonstrate significant outperformance of the extended model over the classic OGARCH model and the commonly used Exponentially Weighted Moving Average (EWMA) model. In addition, we show that the extended model is superior to OGARCH and EWMA in terms of predictive accuracy.
We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretisation bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation techniques. Instead, our method u
We consider the problem of flexible modeling of higher order hidden Markov models when the number of latent states and the nature of the serial dependence, including the true order, are unknown. We propose Bayesian nonparametric methodology based on
This paper gives a method for computing distributions associated with patterns in the state sequence of a hidden Markov model, conditional on observing all or part of the observation sequence. Probabilities are computed for very general classes of pa
We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically in this paper, we carry out finite and infinite mixture model-based cluster
Pulsar timing experiments typically generate a phase-connected timing solution from a sequence of times-of-arrival (TOAs) by absolute pulse numbering, i.e. by fitting an integer number of pulses between TOAs in order to minimize the residuals with re