ﻻ يوجد ملخص باللغة العربية
We consider a pseudo-marginal Metropolis--Hastings kernel $P_m$ that is constructed using an average of $m$ exchangeable random variables, as well as an analogous kernel $P_s$ that averages $s<m$ of these same random variables. Using an embedding technique to facilitate comparisons, we show that the asymptotic variances of ergodic averages associated with $P_m$ are lower bounded in terms of those associated with $P_s$. We show that the bound provided is tight and disprove a conjecture that when the random variables to be averaged are independent, the asymptotic variance under $P_m$ is never less than $s/m$ times the variance under $P_s$. The conjecture does, however, hold when considering continuous-time Markov chains. These results imply that if the computational cost of the algorithm is proportional to $m$, it is often better to set $m=1$. We provide intuition as to why these findings differ so markedly from recent results for pseudo-marginal kernels employing particle filter approximations. Our results are exemplified through two simulation studies; in the first the computational cost is effectively proportional to $m$ and in the second there is a considerable start-up cost at each iteration.
This paper discusses the challenges presented by tall data problems associated with Bayesian classification (specifically binary classification) and the existing methods to handle them. Current methods include parallelizing the likelihood, subsamplin
We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretisation bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation techniques. Instead, our method u
We propose a new kernel for Metropolis Hastings called Directional Metropolis Hastings (DMH) with multivariate update where the proposal kernel has state dependent covariance matrix. We use the derivative of the target distribution at the current sta
This paper develops a Bayesian computational platform at the interface between posterior sampling and optimization in models whose marginal likelihoods are difficult to evaluate. Inspired by adversarial optimization, namely Generative Adversarial Net
This article addresses the problem of efficient Bayesian inference in dynamic systems using particle methods and makes a number of contributions. First, we develop a correlated pseudo-marginal (CPM) approach for Bayesian inference in state space (SS)