ﻻ يوجد ملخص باللغة العربية
An efficient route to synthesize macroscopic amounts of graphene is highly desired and a bulk characterization of such samples, in terms of the number of layers, is equally important. We present a Raman spectroscopy-based method to determine the distribution of the number of graphene layers in chemically exfoliated graphene. We utilize a controlled vapor-phase potassium intercalation technique and identify a lightly doped stage, where the Raman modes of undoped and doped few-layer graphene flakes coexist. The spectra can be unambiguously distinguished from alkali doped graphite, and a modeling with the distribution of the layers yields an upper limit of flake thickness of five layers with a significant single-layer graphene content. Complementary statistical AFM measurements on individual few-layer graphene flakes find a consistent distribution of the layer numbers.
We report the realization of field-effect transistors (FETs) made with chemically synthesized multilayer 2D crystal semiconductor MoS2. Electrical properties such as the FET mobility, subthreshold swing, on/off ratio, and contact resistance of chemic
Resonant scatterers such as hydrogen adatoms can strongly enhance the low energy density of states in graphene. Here, we study the impact of these impurities on the electronic screening. We find a two-faced behavior: Kubo formula calculations reveal
The advent of topological phases of matter revealed a variety of observed boundary phenomena, such as chiral and helical modes found at the edges of two-dimensional (2D) topological insulators. Antichiral states in 2D semimetals, i.e., copropagating
We formulate the chiral decomposition rules that govern the electronic structure of a broad family of twisted $N+M$ multilayer graphene configurations that combine arbitrary stacking order and a mutual twist. We show that at the magic angle in the ch
Layered van der Waals semimetallic $T_mathrm{d}$-WTe$_{2}$, exhibiting intriguing properties which include non-saturating extreme positive magnetoresistance (MR) and tunable chiral anomaly, has emerged as model topological type-II Weyl semimetal syst