ﻻ يوجد ملخص باللغة العربية
We demonstrate a broad, flat, visible supercontinuum spectrum that is generated by a dispersion-engineered tapered photonic crystal fiber pumped by a 1 GHz repetition rate turn-key Ti:sapphire laser outputting $sim$ 30 fs pulses at 800 nm. At a pulse energy of 100 pJ, we obtain an output spectrum that is flat to within 3 dB over the range 490-690 nm with a blue tail extending below 450 nm. The mode-locked laser combined with the photonic crystal fiber forms a simple visible frequency comb system that is extremely well-suited to the precise calibration of astrophysical spectrographs, among other applications.
Many objects on the sky exhibit a centrosymmetric polarization pattern, particularly in cases involving single scattering around a central source. Utilizing a novel liquid crystal device (the ``theta cell) that transforms the coordinate system of lin
Astrophotonics is the next-generation approach that provides the means to miniaturize near-infrared (NIR) spectrometers for upcoming large telescopes and make them more robust and inexpensive. The target requirements for our spectrograph are: a resol
Space exemplifies the ultimate test-bed environment for any materials technology. The harsh conditions of space, with extreme temperature changes, lack of gravity and atmosphere, intense solar and cosmic radiation, and mechanical stresses of launch a
Optical fibers have altered astronomical instrument design by allowing for a complex, often large instrument to be mounted in a remote and stable location with respect to the telescope. The fibers also enable the possibility to rearrange the signal f
On-chip ultraviolet to infrared (UV-IR) spectrum frequency metrology is of crucial importance as a characterization tool for fundamental studies on quantum physics, chemistry, and biology. Due to the strong material dispersion, traditional techniques