ترغب بنشر مسار تعليمي؟ اضغط هنا

Visible-spanning flat supercontinuum for astronomical applications

64   0   0.0 ( 0 )
 نشر من قبل Aakash Ravi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a broad, flat, visible supercontinuum spectrum that is generated by a dispersion-engineered tapered photonic crystal fiber pumped by a 1 GHz repetition rate turn-key Ti:sapphire laser outputting $sim$ 30 fs pulses at 800 nm. At a pulse energy of 100 pJ, we obtain an output spectrum that is flat to within 3 dB over the range 490-690 nm with a blue tail extending below 450 nm. The mode-locked laser combined with the photonic crystal fiber forms a simple visible frequency comb system that is extremely well-suited to the precise calibration of astrophysical spectrographs, among other applications.



قيم البحث

اقرأ أيضاً

290 - Frans Snik 2009
Many objects on the sky exhibit a centrosymmetric polarization pattern, particularly in cases involving single scattering around a central source. Utilizing a novel liquid crystal device (the ``theta cell) that transforms the coordinate system of lin ear polarization in an image plane from Cartesian to polar, the observation of centrosymmetric polarization patterns can be improved: instead of measuring Stokes Q and U on the sky, one only needs to measure Stokes Q in the new instrument coordinate system. This reduces the effective exposure time by a factor of two and simplifies the polarization modulator design. According to the manufacturers specifications and to measurements in the lab, the liquid crystal device can be applied in the visible and NIR wavelength range. Astronomical science cases for a``radial polarimeter include exoplanet detection, imaging of circumstellar disks, reflection nebulae and light echos, characterization of planetary atmospheres and diagnostics of the solar K-corona. The first astronomical instrument that utilizes a theta cell for radial polarimetry is the S5T (Small Synoptic Second Solar Spectrum Telescope), which accurately measures scattering polarization signals near the limb of the sun. These observations are crucial for understanding the nature and origin of weak, turbulent magnetic fields in the solar photosphere and elsewhere in the universe. A ``radial polarimeter observing a slightly defocused point source performs one-shot full linear polarimetry. With a theta cell in a pupil plane, a beams linear polarization properties (e.g. for calibration purposes) can be fully controlled through pupil masking.
Astrophotonics is the next-generation approach that provides the means to miniaturize near-infrared (NIR) spectrometers for upcoming large telescopes and make them more robust and inexpensive. The target requirements for our spectrograph are: a resol ving power of about 3000, wide spectral range (J and H bands), free spectral range of about 30 nm, high on-chip throughput of about 80% (-1dB) and low crosstalk (high contrast ratio) between adjacent on-chip wavelength channels of less than 1% (-20dB). A promising photonic technology to achieve these requirements is Arrayed Waveguide Gratings (AWGs). We have developed our first generation of AWG devices using a silica-on-silicon substrate with a very thin layer of silicon-nitride in the core of our waveguides. The waveguide bending losses are minimized by optimizing the geometry of the waveguides. Our first generation of AWG devices are designed for H band and have a resolving power of around 1500 and free spectral range of about 10 nm around a central wavelength of 1600 nm. The devices have a footprint of only 12 mm x 6 mm. They are broadband (1450-1650 nm), have a peak on-chip throughput of about 80% (-1 dB) and contrast ratio of about 1.5% (-18 dB). These results confirm the robustness of our design, fabrication and simulation methods. Currently, the devices are designed for Transverse Electric (TE) polarization and all the results are for TE mode. We are developing separate J- and H-band AWGs with higher resolving power, higher throughput and lower crosstalk over a wider free spectral range to make them better suited for astronomical applications.
63 - Ognjen Ilic 2020
Space exemplifies the ultimate test-bed environment for any materials technology. The harsh conditions of space, with extreme temperature changes, lack of gravity and atmosphere, intense solar and cosmic radiation, and mechanical stresses of launch a nd deployment, represent a multifaceted set of challenges. The materials we engineer must not only meet these challenges, but they need to do so while keeping overall mass to a minimum and guaranteeing performance over long periods of time with no opportunity for repair. Nanophotonic materials -- materials that embody structural variations on a scale comparable to the wavelength of light -- offer opportunities for addressing some of these difficulties. Here, we examine how advances in nanophotonics and nanofabrication are enabling ultrathin and lightweight structures with unparalleled ability to shape light-matter interactions over a broad electromagnetic spectrum. From solar panels that can be fabricated in space to applications of light for propulsion, the next generation of lightweight and multifunctional photonic materials stands to both impact existing technologies and pave the way for new space technologies.
Optical fibers have altered astronomical instrument design by allowing for a complex, often large instrument to be mounted in a remote and stable location with respect to the telescope. The fibers also enable the possibility to rearrange the signal f rom a focal plane to form a psuedo-slit at the entrance to a spectrograph, optimizing the detector usage and enabling the study of hundreds of thousands of stars or galaxies simultaneously. Multi-core fibers in particular offer several favorable properties with respect to traditional fibers: 1) the separation between single-mode cores is greatly reduced and highly regular with respect to free standing fibers, 2) they offer a monolithic package with multi-fiber capabilities and 3) they operate at the diffraction limit. These properties have enabled the realization of single component photonic lanterns, highly simplified fiber Bragg gratings, and advanced fiber mode scramblers. In addition, the precise grid of cores has enabled the design of efficient single-mode fiber integral field units for spectroscopy. In this paper, we provide an overview of the broad range of applications enabled by multi-core fiber technology in astronomy and outline future areas of development.
On-chip ultraviolet to infrared (UV-IR) spectrum frequency metrology is of crucial importance as a characterization tool for fundamental studies on quantum physics, chemistry, and biology. Due to the strong material dispersion, traditional techniques fail to demonstrate the device that can be applied to generate coherent broadband spectrum that covers the full UV-IR wavelengths. In this work, we explore several novel techniques for supercontinuum generation covering near-UV to near-IR spectrum using AlN micro-photonic waveguides, which is essential for frequency metrology applications: First, to create anomalous dispersion, high order mode (TE10) was adopted, together with its carefully designed high efficiency excitation strategies. Second, the spectrum was broadened by soliton fission through third order dispersion and second harmonic generation, by which directional energy transfer from near-IR to near-UV can be obtained. Finally, high quality single crystalline AlN material was used to provide broadband transparency from UV to IR. Under decently low pulse energy of 0.36 nJ, the experimental spectrum from supercontinuum generation covers from 490 nm to over 1100 nm, with a second harmonic generation band covering from 405 nm to 425 nm. This work paves the way towards UV-IR full spectrum on-chip frequency metrology applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا