ﻻ يوجد ملخص باللغة العربية
Optical fibers have altered astronomical instrument design by allowing for a complex, often large instrument to be mounted in a remote and stable location with respect to the telescope. The fibers also enable the possibility to rearrange the signal from a focal plane to form a psuedo-slit at the entrance to a spectrograph, optimizing the detector usage and enabling the study of hundreds of thousands of stars or galaxies simultaneously. Multi-core fibers in particular offer several favorable properties with respect to traditional fibers: 1) the separation between single-mode cores is greatly reduced and highly regular with respect to free standing fibers, 2) they offer a monolithic package with multi-fiber capabilities and 3) they operate at the diffraction limit. These properties have enabled the realization of single component photonic lanterns, highly simplified fiber Bragg gratings, and advanced fiber mode scramblers. In addition, the precise grid of cores has enabled the design of efficient single-mode fiber integral field units for spectroscopy. In this paper, we provide an overview of the broad range of applications enabled by multi-core fiber technology in astronomy and outline future areas of development.
Multi-port beamsplitters are cornerstone devices for high-dimensional quantum information tasks, which can outperform the two-dimensional ones. Nonetheless, the fabrication of such devices has been proven to be challenging with progress only recently
INAF Trieste Astronomical Observatory (OATs) has a long tradition in information technology applied to Astronomical and Astrophysical use cases, particularly for what regards computing for data reduction, analysis and simulations; data and archives m
With the aim of utilizing arrayed waveguide gratings for multi-object spectroscopy in the field of astronomy, we outline several ways in which standard telecommunications grade chips should be modified. In particular, by removing the parabolic-horn t
Many objects on the sky exhibit a centrosymmetric polarization pattern, particularly in cases involving single scattering around a central source. Utilizing a novel liquid crystal device (the ``theta cell) that transforms the coordinate system of lin
The Commission on Science and Information Technology (CTCI) of the Brazilian Astronomical Society (SAB) is tasked with assisting the Society on issues of astronomical data management, from its handling and the management of data centres and networks,