ﻻ يوجد ملخص باللغة العربية
We experimentally verify hitherto untested theoretical predictions about the thermoelectric properties of Kondo correlated quantum dots (QDs). The specific conditions required for this study are obtained by using QDs epitaxially grown in nanowires, combined with a recently developed method for controlling and measuring temperature differences at the nanoscale. This makes it possible to obtain data of very high quality both below and above the Kondo temperature, and allows a quantitative comparison with theoretical predictions. Specifically, we verify that Kondo correlations can induce a polarity change of the thermoelectric current, which can be reversed either by increasing the temperature or by applying a magnetic field.
We have observed the Kondo effect in strongly coupled semiconducting nanowire quantum dots. The devices are made from indium arsenide nanowires, grown by molecular beam epitaxy, and contacted by titanium leads. The device transparency can be tuned by
We report measurements of the nonlinear conductance of InAs nanowire quantum dots coupled to superconducting leads. We observe a clear alternation between odd and even occupation of the dot, with sub-gap-peaks at $|V_{sd}|=Delta/e$ markedly stronger(
We demonstrate high-temperature thermoelectric conversion in InAs/InP nanowire quantum dots by taking advantage of their strong electronic confinement. The electrical conductance G and the thermopower S are obtained from charge transport measurements
Numerical analysis of the simplest odd-numbered system of coupled quantum dots reveals an interplay between magnetic ordering, charge fluctuations and the tendency of itinerant electrons in the leads to screen magnetic moments. The transition from lo
A dilute concentration of magnetic impurities can dramatically affect the transport properties of an otherwise pure metal. This phenomenon, known as the Kondo effect, originates from the interactions of individual magnetic impurities with the conduct