ﻻ يوجد ملخص باللغة العربية
We demonstrate high-temperature thermoelectric conversion in InAs/InP nanowire quantum dots by taking advantage of their strong electronic confinement. The electrical conductance G and the thermopower S are obtained from charge transport measurements and accurately reproduced with a theoretical model accounting for the multi-level structure of the quantum dot. Notably, our analysis does not rely on the estimate of co-tunnelling contributions since electronic thermal transport is dominated by multi-level heat transport. By taking into account two spin-degenerate energy levels we are able to evaluate the electronic thermal conductance K and investigate the evolution of the electronic figure of merit ZT as a function of the quantum dot configuration and demonstrate ZT ~ 35 at 30 K, corresponding to an electronic effciency at maximum power close to the Curzon- Ahlborn limit.
We report results on the control of barrier transparency in InAs/InP nanowire quantum dots via the electrostatic control of the device electron states. Recent works demonstrated that barrier transparency in this class of devices displays a general tr
With downscaling of electronic circuits, components based on semiconductor quantum dots are assuming increasing relevance for future technologies. Their response under external stimuli intrinsically depend on their quantum properties. Here we investi
We report measurements of the nonlinear conductance of InAs nanowire quantum dots coupled to superconducting leads. We observe a clear alternation between odd and even occupation of the dot, with sub-gap-peaks at $|V_{sd}|=Delta/e$ markedly stronger(
Photoluminescence data from single, self-assembled InAs/InP quantum dots in magnetic fields up to 7 T are presented. Exciton g-factors are obtained for dots of varying height, corresponding to ground state emission energies ranging from 780 meV to 11
We have investigated the optical properties of a single InAsP quantum dot embedded in a standing InP nanowire. A regular array of nanowires was fabricated by epitaxial growth and electron-beam patterning. The elongation of transverse exciton spin rel