ترغب بنشر مسار تعليمي؟ اضغط هنا

New magnetic chemically peculiar stars and candidates in the ATLAS First Catalog of Variable Stars

117   0   0.0 ( 0 )
 نشر من قبل Ernst Paunzen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The number of known variable stars has increased by several magnitudes over the last decade, and automated classification routines are becoming increasingly important to cope with this development. Here we show that the upside-down CBH variables, which were proposed as a potentially new class of variable stars by Heinze et al. (2018) in the ATLAS First Catalogue of Variable Stars, are, at least to a high percentage, made up of alpha2 Canum Venaticorum (ACV) variables - that is, photometrically variable magnetic chemically peculiar (CP2/He-peculiar) stars - with distinct double-wave light curves. Using suitable selection criteria, we identified 264 candidate ACV variables in the ATLAS variable star catalogue. 62 of these objects were spectroscopically confirmed with spectra from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (all new discoveries except for nine stars) and classified on the MK system. The other 202 stars are here presented as ACV star candidates that require spectroscopic confirmation. The vast majority of our sample of stars are main-sequence objects. Derived masses range from 1.4M(Sun) to 5M(Sun), with half our sample stars being situated in the range from 2 M(Sun) to 2.4 M(Sun), in good agreement with the spectral classifications. Most stars belong to the thin or thick disk; four objects, however, classify as members of the halo population. With a peak magnitude distribution at around 14th magnitude, the here presented stars are situated at the faint end of the known Galactic mCP star population. Our study highlights the need to consider rare variability classes, like ACV variables, in automated classification routines.



قيم البحث

اقرأ أيضاً

In this paper we present a new catalogue of Chemically Peculiar (CP) stars obtained by compiling publications in which abundances of metals are provided. Our catalogue includes 428 stars for which the data were obtained through spectroscopic observat ions. Most of them (416) are AmFm, HgMn and ApBp stars. We have used this compilation to proceed to a statistical overview of the abundance anomalies versus the physical parameters of the stars. The Spearmans rank correlation test has been applied, and a significant number of correlations of abundance peculiarities with respect to effective temperature, surface gravity and rotation velocity have been found. Four interesting cases are discussed in details: the Mn peculiarities in HgMn stars, the Ca correlation with respect to effective temperature in AmFm stars, the case of helium and iron in ApBp stars. Furthermore, we checked for ApBp stars using Anderson-Darling test wether the belonging to a multiple system is a determinant parameter or not for abundance peculiarities.
Magnetic chemically peculiar (mCP) stars are important to astrophysics because their complex atmospheres lend themselves perfectly to the investigation of the interplay between such diverse phenomena as atomic diffusion, magnetic fields, and stellar rotation. The present work is aimed at identifying new mCP stars using spectra collected by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Suitable candidates were selected by searching LAMOST DR4 spectra for the presence of the characteristic 5200A flux depression. Spectral classification was carried out with a modified version of the MKCLASS code and the accuracy of the classifications was estimated by comparison with results from manual classification and the literature. Using parallax data and photometry from Gaia DR2, we investigated the space distribution of our sample stars and their properties in the colour-magnitude diagram. Our final sample consists of 1002 mCP stars, most of which are new discoveries (only 59 previously known). Traditional mCP star peculiarities have been identified in all but 36 stars, highlighting the efficiency of the codes peculiarity identification capabilities. The derived temperature and peculiarity types are in agreement with manually derived classifications and the literature. Our sample stars are between 100 Myr and 1 Gyr old, with the majority having masses between 2M(Sun) and 3M(Sun). Our results could be considered as strong evidence for an inhomogeneous age distribution among low-mass (M < 3M(Sun)) mCP stars. We identified several astrophysically interesting objects: two mCP stars have distances and kinematical properties in agreement with halo stars; an eclipsing binary system hosting an mCP star component; and an SB2 system likely comprising of an mCP star and a supergiant component.
We present the preliminary results of an image-subtraction analysis of the Galactic globular cluster M79 (NGC 1904), as well as a new investigation of the variable star population in NGC 1851. Both M79 and NGC 1851 have been previously associated wit h the Canis Major overdensity, which has been suggested to have an extragalactic origin. We found 6 new RR Lyrae in M79, and also recovered 3 previously known RR Lyrae. The average period of the 5 ab-type RR Lyrae is 0.68 ~ d, corresponding to an Oosterhoff II classification -- which is unusual, though not unprecedented, for systems of extragalactic origin. We also report on the discovery of at least 4 previously unknown variables in NGC 1851.
The Asteroid Terrestrial-impact Last Alert System (ATLAS) carries out its primary planetary defense mission by surveying about 13000 deg^2 at least four times per night. The resulting data set is useful for the discovery of variable stars to a magnit ude limit fainter than r~18, with amplitudes down to 0.01 mag for bright objects. Here we present a Data Release One catalog of variable stars based on analyzing 142 million stars measured at least 100 times in the first two years of ATLAS operations. Using a Lomb-Scargle periodogram and other variability metrics, we identify 4.7 million candidate variables which we analyze in detail. Through Space Telescope Science Institute, we publicly release lightcurves for all of them, together with a vector of 169 classification features for each star. We do this at the level of unconfirmed candidate variables in order to provide the community with a large set of homogeneously analyzed photometry and avoid pre-judging which types of objects others may find most interesting. We use machine learning to classify the candidates into fifteen different broad categories based on lightcurve morphology. About 10% (430,000 stars) pass extensive tests designed to screen out spurious variability detections: we label these as `probable variables. Of these, 230,000 receive specific classifications as eclipsing binaries, pulsating, Mira-type, or sinusoidal variables: these are the `classified variables. New discoveries among the probable variables number more than 300,000, while 150,000 of the classified variables are new, including about 10,000 pulsating variables, 2,000 Mira stars, and 70,000 eclipsing binaries.
Since the discovery of the spectral peculiarities of their prototype alpha2 Canum Venaticorum in 1897, the so-called ACV variables, which are comprised of several groups of chemically peculiar stars of the upper main sequence, have been the target of numerous photometric and spectroscopic studies. Especially for the brighter ACV variables, continuous observations over about a century are available, which are important to study long-term effects such as period changes or magnetic cycles in these objects. The present work presents an analysis of 165 Ap/CP2 and He-weak/CP4 stars using light curves obtained by the Solar Mass Ejection Imager (SMEI) between the years 2003 and 2011. These data fill an important gap in observations for bright ACV variables between the Hipparcos and TESS satellite missions. Using specifically tailored data treatment and period search approaches, we find variability in the accuracy limit of the employed data in 84 objects. The derived periods are in excellent agreement with the literature; for one star, the here presented solution represents the first published period. We discuss the apparently constant stars and the corresponding level of non-variability. From an investigation of our target star sample in the Hertzsprung-Russell diagram, we deduce ages between 100 Myr and 1 Gyr for the majority of our sample stars. Our results support that the variable CP2/4 stars are in a more advanced evolutionary state and that He and Si peculiarities, preferentially found in the hotter, and thus more massive, CP stars, produce larger spots or spots of higher contrast.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا