ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of system size on freezeout conditions extracted from transverse momentum spectra of hadrons

213   0   0.0 ( 0 )
 نشر من قبل Ajay Kumar Dash
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The data on hadron transverse momentum spectra in different centrality classes of p+Pb collisions at $sqrt{s}_{NN} = 5.02$ TeV has been analysed to extract the freezeout hypersurface within a simultaneous chemical and kinetic freezeout scenario. The freezeout hypersurface has been extracted for three different freezeout schemes that differ in the way strangeness is treated: i. unified freezeout for all hadrons in complete thermal equilibrium (1FO), ii. unified freezeout for all hadrons with an additional parameter $gamma_S$ which accounts for possible out-of-equilibrium production of strangeness (1FO$+gamma_S$), and iii. separate freezeout for hadrons with and without strangeness content (2FO). Unlike in heavy ion collisions where 2FO performs best in describing the mean hadron yields as well as the transverse momentum spectra, in p+Pb we find that 1FO$+gamma_S$ with one less parameter than 2FO performs better. This confirms expectations from previous analysis on the system size dependence in the freezeout scheme with mean hadron yields: while heavy ion collisions that are dominated by constituent interactions prefer 2FO, smaller collision systems like proton + nucleus and proton + proton collisions with lesser constituent interaction prefer a unified freezeout scheme with varying degree of strangeness equilibration.



قيم البحث

اقرأ أيضاً

We present a study of transverse momentum ($p_{T}$) spectra of unidentified charged particles in pp collisions at RHIC and LHC energies from $sqrt{s}$ = 62.4 GeV to 13 TeV using Tsallis/Hagedorn function. The power law of Tsallis/Hagedorn form gives excellent description of the hadron spectra in $p_{T}$ range from 0.2 to 300 GeV/$c$. The power index $n$ of the $p_T$ distributions is found to follow a function of the type $a+b/sqrt {s}$ with asymptotic value $a = 5.72$. The parameter $T$ governing the soft bulk contribution to the spectra remains almost same over wide range of collision energies. We also provide a Tsallis/Hagedorn fit to the $p_{T}$ spectra of hadrons in pPb and different centralities of PbPb collisions at $sqrt{s_{NN}}$ = 5.02 TeV. The data/fit shows deviations from the Tsallis distribution which become more pronounced as the system size increases. We suggest simple modifications in the Tsallis/Hagedorn power law function and show that the above deviations can be attributed to the transverse flow in low $p_T$ region and to the in-medium energy loss in high $p_T$ region.
The transverse momentum distributions of various hadrons produced in most central Pb+Pb collisions at LHC energy Root(s_NN) = 2.76 TeV have been studied using our earlier proposed unified statistical thermal freeze-out model. The calculated results a re found to be in good agreement with the experimental data measured by the ALICE experiment. The model calculation fits provide the thermal freeze-out conditions in terms of the temperature and collective flow effect parameters for different particle species. Interestingly the model parameter fits reveal a strong collective flow in the system which appears to be a consequence of the increasing particle density at LHC. The model used incorporates a longitudinal as well as transverse hydrodynamic flow. The chemical potential has been assumed to be nearly equal to zero for the bulk of the matter owing to a high degree of nuclear transparency effect at such energies. The contributions from heavier decay resonances are also taken into account in our calculations.
In order to characterize the transverse momentum spectra of positive pions measured in the ALICE experiment, two thermal approaches are utilized; one is based on degeneracy of non-perfect Bose-Einstein gas and the other imposes an {it ad-hoc} finite pion-chemical potential. The inclusion of missing haron states and the out-of-chemical equilibrium greatly contribute to the excellent characterization of pion production. The excellent reproduction of the experimental data can be understood as a manifestation of not-yet-regarded anomalous pion-production, which likely contribute to the long-standing debate on the {it anomalous} proton-to-pion ratios at top RHIC and LHC energies.
Using generic (non)extensive statistics, in which the underlying system autonomously manifests its extensive and nonextensive statistical nature, we extract various fit parameters from the CMS experiment and compare these to the corresponding results obtained from Tsallis and Boltzmann statistics. The present study is designed to indicate the possible variations between the three types of statistical approaches and characterizes their dependence on collision energy, multiplicity, and size of the system of interest. We analyze the transverse momentum spectra $p_T$ of the strange hadrons Kslxi produced in Pb+Pb collisions, at 2.76 TeV, in p+Pb collisions, at 5.02 TeV, and in $p+p$ collisions, at 7 TeV. From the comparison of the resulting fit parameters; temperature $T$, volume $V$, and nonextensvie parameter $d$, with calculations based on Tsallis and Boltzmann statistics, remarkable differences between the three types of statistics are determined besides a strong dependence on size and type of the colliding system. We conclude that the produced particles with large masses and large strange quantum numbers likely freeze out earlier than the ones with smaller masses and less strange quantum numbers. This conclusion seems not depending on the type of the particle or the collision but apparently manifesting transitions from chemical (larger temperature) to the kinetic freezeouts (lower temperature). For the first university (equivalent) class c=1, the decrease in the second one, $d$, with increasing energy and collision centrality highlights that the system departs from nonextensivity (non-equilibrium) and apparently approaches extensivity (equilibrium) indicating that the Boltzmann statistics becomes the proper statistical approach in describing that system. Last but not least, we present analytical expressions for the energy dependence of the various fit parameters.
We present the transverse momentum spectrum for a heavy hadron at threshold in a groomed jet initiated by a heavy quark. The cross section is doubly differential in the energy fraction of an identified heavy hadron in the jet and its transverse momen tum measured with respect to the groomed (recoil free) jet axis. The grooming is implemented using a soft-drop grooming algorithm and helps us in mitigating the effects of Non-Global logarithms and pile up. For the particular case of a $B$ meson, we identify two distinct regimes of the transverse momentum spectrum and develop an EFT within the formalisms of Soft Collineat Effective Theory (SCET) and Heavy Quark Effective Theory (HQET) for each of these regions. We show how each region can be matched smoothly into the other to provide a prediction for the perturbative transverse momentum spectrum. The EFT also predicts the scaling behavior of the leading non-perturbative power corrections and implements a simple shape function to account for hadronization. We work in the threshold region where the heavy hadron carries most of the energy of the jet since in this regime, we have a very good discriminating power between heavy quark and gluon initiated jets. We observe that the shape of the spectrum is independent of the energy of the jet over a large range of transverse momentum. We propose that this spectrum can be used as a probe of evolution for heavy quark TMD fragmentation function. At the same time, it can be treated as a jet substructure observable for probing Quark-Gluon Plasma (QGP).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا