ﻻ يوجد ملخص باللغة العربية
Using generic (non)extensive statistics, in which the underlying system autonomously manifests its extensive and nonextensive statistical nature, we extract various fit parameters from the CMS experiment and compare these to the corresponding results obtained from Tsallis and Boltzmann statistics. The present study is designed to indicate the possible variations between the three types of statistical approaches and characterizes their dependence on collision energy, multiplicity, and size of the system of interest. We analyze the transverse momentum spectra $p_T$ of the strange hadrons Kslxi produced in Pb+Pb collisions, at 2.76 TeV, in p+Pb collisions, at 5.02 TeV, and in $p+p$ collisions, at 7 TeV. From the comparison of the resulting fit parameters; temperature $T$, volume $V$, and nonextensvie parameter $d$, with calculations based on Tsallis and Boltzmann statistics, remarkable differences between the three types of statistics are determined besides a strong dependence on size and type of the colliding system. We conclude that the produced particles with large masses and large strange quantum numbers likely freeze out earlier than the ones with smaller masses and less strange quantum numbers. This conclusion seems not depending on the type of the particle or the collision but apparently manifesting transitions from chemical (larger temperature) to the kinetic freezeouts (lower temperature). For the first university (equivalent) class c=1, the decrease in the second one, $d$, with increasing energy and collision centrality highlights that the system departs from nonextensivity (non-equilibrium) and apparently approaches extensivity (equilibrium) indicating that the Boltzmann statistics becomes the proper statistical approach in describing that system. Last but not least, we present analytical expressions for the energy dependence of the various fit parameters.
We present a study of transverse momentum ($p_{T}$) spectra of unidentified charged particles in pp collisions at RHIC and LHC energies from $sqrt{s}$ = 62.4 GeV to 13 TeV using Tsallis/Hagedorn function. The power law of Tsallis/Hagedorn form gives
The data on hadron transverse momentum spectra in different centrality classes of p+Pb collisions at $sqrt{s}_{NN} = 5.02$ TeV has been analysed to extract the freezeout hypersurface within a simultaneous chemical and kinetic freezeout scenario. The
The transverse momentum distributions of various hadrons produced in most central Pb+Pb collisions at LHC energy Root(s_NN) = 2.76 TeV have been studied using our earlier proposed unified statistical thermal freeze-out model. The calculated results a
In order to characterize the transverse momentum spectra of positive pions measured in the ALICE experiment, two thermal approaches are utilized; one is based on degeneracy of non-perfect Bose-Einstein gas and the other imposes an {it ad-hoc} finite
We make use of a simple scalar diquark model to study the potential transverse momentum and potential angular momentum, defined as the difference between the Jaffe-Manohar and Ji notions of transverse momentum and orbital angular momentum, respective