ترغب بنشر مسار تعليمي؟ اضغط هنا

Transverse Momentum Spectra at Threshold for Groomed Heavy Quark Jets

278   0   0.0 ( 0 )
 نشر من قبل Yiannis Makris
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the transverse momentum spectrum for a heavy hadron at threshold in a groomed jet initiated by a heavy quark. The cross section is doubly differential in the energy fraction of an identified heavy hadron in the jet and its transverse momentum measured with respect to the groomed (recoil free) jet axis. The grooming is implemented using a soft-drop grooming algorithm and helps us in mitigating the effects of Non-Global logarithms and pile up. For the particular case of a $B$ meson, we identify two distinct regimes of the transverse momentum spectrum and develop an EFT within the formalisms of Soft Collineat Effective Theory (SCET) and Heavy Quark Effective Theory (HQET) for each of these regions. We show how each region can be matched smoothly into the other to provide a prediction for the perturbative transverse momentum spectrum. The EFT also predicts the scaling behavior of the leading non-perturbative power corrections and implements a simple shape function to account for hadronization. We work in the threshold region where the heavy hadron carries most of the energy of the jet since in this regime, we have a very good discriminating power between heavy quark and gluon initiated jets. We observe that the shape of the spectrum is independent of the energy of the jet over a large range of transverse momentum. We propose that this spectrum can be used as a probe of evolution for heavy quark TMD fragmentation function. At the same time, it can be treated as a jet substructure observable for probing Quark-Gluon Plasma (QGP).

قيم البحث

اقرأ أيضاً

We develop an effective field theory (EFT) framework to perform an analytic calculation for energy correlator observables computed on groomed heavy-quark jets. A soft-drop grooming algorithm is applied to a jet initiated by a massive quark to minimiz e soft contamination effects such as pile-up and multi-parton interactions. We specifically consider the two-particle energy correlator as an initial application of this EFT framework to compute heavy quark jet substructure. We find that there are different regimes for the event shapes, depending on the size of the measured correlator observable, that require the use of different EFT formulations, in which the quark mass and grooming parameters may be relevant or not. We use the EFT to resum large logarithms in the energy correlator observable in terms of the momentum of a reconstructed heavy hadron to NLL$$ accuracy and subsequently match it to a full QCD $mathcal{O}(alpha_s)$ cross section, which we also compute. We compare our predictions to simulations in PYTHIA for $e^+e^-$ collisions. We find a good agreement with partonic simulations, as well as hadronic ones with an appropriate shape function used to describe nonperturbative effects and the heavy quark hadron decay turned off. We also predict the scaling behavior for the leading nonperturbative power correction due to hadronization. Consequently, we can give a prediction for the energy correlator distribution at the level of the reconstructed heavy hadron. This work provides a general framework for the analysis of heavy quark jet substructure observables.
We present the transverse momentum spectrum of groomed jets in di-jet events for $e^+e^-$ collisions and semi-inclusive deep inelastic scattering (SIDIS). The jets are groomed using a soft-drop grooming algorithm which helps in mitigating effects of non-global logarithms and underlying event. At the same time, by reducing the final state hadronization effects, it provides a clean access to the non-perturbative part of the evolution of transverse momentum dependent (TMD) distributions. In SIDIS experiments we look at the transverse momentum of the groomed jet measured w.r.t. the incoming hadron in the Breit frame. Because the final state hadronization effects are significantly reduced, the SIDIS case allows to probe the TMD parton distribution functions. We discuss the sources of non-perturbative effects in the low transverse momentum region including novel (but small) effects that arise due to grooming. We derive a factorization theorem within SCET and resum any large logarithm in the measured transverse momentum up to NNLL accuracy using the $zeta$-prescription as implemented in the artemide package and provide a comparison with simulations.
In order to characterize the transverse momentum spectra of positive pions measured in the ALICE experiment, two thermal approaches are utilized; one is based on degeneracy of non-perfect Bose-Einstein gas and the other imposes an {it ad-hoc} finite pion-chemical potential. The inclusion of missing haron states and the out-of-chemical equilibrium greatly contribute to the excellent characterization of pion production. The excellent reproduction of the experimental data can be understood as a manifestation of not-yet-regarded anomalous pion-production, which likely contribute to the long-standing debate on the {it anomalous} proton-to-pion ratios at top RHIC and LHC energies.
We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the soft drop declustering procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.
We present a study of transverse momentum ($p_{T}$) spectra of unidentified charged particles in pp collisions at RHIC and LHC energies from $sqrt{s}$ = 62.4 GeV to 13 TeV using Tsallis/Hagedorn function. The power law of Tsallis/Hagedorn form gives excellent description of the hadron spectra in $p_{T}$ range from 0.2 to 300 GeV/$c$. The power index $n$ of the $p_T$ distributions is found to follow a function of the type $a+b/sqrt {s}$ with asymptotic value $a = 5.72$. The parameter $T$ governing the soft bulk contribution to the spectra remains almost same over wide range of collision energies. We also provide a Tsallis/Hagedorn fit to the $p_{T}$ spectra of hadrons in pPb and different centralities of PbPb collisions at $sqrt{s_{NN}}$ = 5.02 TeV. The data/fit shows deviations from the Tsallis distribution which become more pronounced as the system size increases. We suggest simple modifications in the Tsallis/Hagedorn power law function and show that the above deviations can be attributed to the transverse flow in low $p_T$ region and to the in-medium energy loss in high $p_T$ region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا