ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy response of X-rays under high flux conditions using a thin APD for the energy range of 6-33 keV

120   0   0.0 ( 0 )
 نشر من قبل Takahiko Masuda Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports on the demonstration of a high-rate energy measurement technique using a thin depletion layer silicon avalanche photodiode (Si-APD). A dedicated amplitude-to-time converter is developed to realize simultaneous energy and timing measurement in a high rate condition. The energy response of the system is systematically studied by using monochromatic X-ray beam with an incident energy ranging from 6 to 33 keV. The obtained energy spectra contain clear peaks and tail distributions. The peak fraction monotonously decreases as the incident photon energy increases. This phenomenon can be explained by considering the distribution of the energy deposit in silicon, which is investigated by using a Monte Carlo simulation.

قيم البحث

اقرأ أيضاً

This paper presents an absolute X-ray photon energy measurement method that uses a Bond diffractometer. The proposed system enables the prompt and rapid in-situ measurement of photon energies in a wide energy range. The diffractometer uses a referenc e silicon single crystal plate and a highly accurate angle encoder called SelfA. We evaluate the performance of the system by repeatedly measuring the energy of the first excited state of the potassium-40 nuclide. The excitation energy is determined as 29829.39(6) eV. It is one order of magnitude more precise than the previous measurement. The estimated uncertainty of the photon energy measurement was 0.7 ppm as a standard deviation and the maximum observed deviation was 2 ppm.
We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley Natio nal Laboratory. It is a prototype of the planned NEXT-100 $^{136}$Xe neutrino-less double beta decay ($0 ubetabeta$) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of $sim$1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and $sim$5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2,459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7 to 20 better than that of the current leading $0 ubetabeta$ experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT-DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 $0 ubetabeta$ search.
Geant4 simulations play a crucial role in the analysis and interpretation of experiments providing low energy precision tests of the Standard Model. This paper focuses on the accuracy of the description of the electron processes in the energy range b etween 100 and 1000 keV. The effect of the different simulation parameters and multiple scattering models on the backscattering coefficients is investigated. Simulations of the response of HPGe and passivated implanted planar Si detectors to beta{} particles are compared to experimental results. An overall good agreement is found between Geant4 simulations and experimental data.
The new Oslo Scintillator Array (OSCAR) has been commissioned at the Oslo Cyclotron Laboratory (OCL). It consists of 30 large volume (diameter 3.5 x 8 inches) LaBr$_3$(Ce) detectors that are used for $gamma$-ray spectroscopy. The response functions f or incident $gamma$-rays up to 20 MeV are simulated with $texttt{Geant4}$. In addition, the resolution, and the total and full-energy peak efficiencies are extracted. The results are in very good agreement with measurements from calibration sources and experimentally obtained mono-energetic in-beam $gamma$-ray spectra.
The effects induced by muons with very low energies are usually neglected. In fact, they could represent a source of radioactive background due to capture processes in different materials, which in most of cases produce radioactive isotopes, and thus they must be taken into account. Plastic track detectors have been used in the present paper to measure the ratio between the vertical and horizontal components of the flux of very low energy terrestrial muons at ground level. The data have been collected during 160 days.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا