ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC

406   0   0.0 ( 0 )
 نشر من قبل Azriel Goldschmidt
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 $^{136}$Xe neutrino-less double beta decay ($0 ubetabeta$) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of $sim$1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and $sim$5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2,459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7 to 20 better than that of the current leading $0 ubetabeta$ experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT-DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 $0 ubetabeta$ search.



قيم البحث

اقرأ أيضاً

187 - S.Ban , K.D.Nakamura , S.Akiyama 2017
AXEL is a high pressure xenon gas TPC detector being developed for neutrinoless double-beta decay search. We use the proportional scintillation mode with a new electroluminescence light detection system to achieve high energy resolution in a large de tector. The detector also has tracking capabilities, which enable significant background rejection. To demonstrate our detection technique, we constructed a 10L prototype detector filled with up to 10bar xenon gas. The FWHM energy resolution obtained by the prototype detector is 4.0 $pm$ 0.30 $%$ at 122 keV, which corresponds to 0.9 ~ 2.0 % when extrapolated to the Q value of the $0 ubetabeta$ decay of $^{136}$Xe.
We demonstrate that the application of an external magnetic field could lead to an improved background rejection in neutrinoless double-beta (0nbb) decay experiments using a high pressure xenon (HPXe) TPC. HPXe chambers are capable of imaging electro n tracks, a feature that enhances the separation between signal events (the two electrons emitted in the 0nbb decay of 136Xe) and background events, arising chiefly from single electrons of kinetic energy compatible with the end-point of the 0nbb decay (Qbb ). Applying an external magnetic field of sufficiently high intensity (in the range of 0.5-1 Tesla for operating pressures in the range of 5-15 atmospheres) causes the electrons to produce helical tracks. Assuming the tracks can be properly reconstructed, the sign (direction) of curvature can be determined at several points along these tracks, and such information can be used to separate signal (0nbb) events containing two electrons producing a track with two different directions of curvature from background (single-electron) events producing a track that should spiral in a single direction. Due to electron multiple scattering, this strategy is not perfectly efficient on an event-by-event basis, but a statistical estimator can be constructed which can be used to reject background events by one order of magnitude at a moderate cost (approx. 30%) in signal efficiency. Combining this estimator with the excellent energy resolution and topological signature identification characteristic of the HPXe TPC, it is possible to reach a background rate of less than one count per ton-year of exposure. Such a low background rate is an essential feature of the next generation of 0nbb experiments, aiming to fully explore the inverse hierarchy of neutrino masses.
Within the framework of xenon-based double beta decay experiments, we propose the possibility to improve the background rejection of an electroluminescent Time Projection Chamber (EL TPC) by reducing the diffusion of the drifting electrons while keep ing nearly intact the energy resolution of a pure xenon EL TPC. Based on state-of-the-art microscopic simulations, a substantial addition of helium, around 10 or 15~%, may reduce drastically the transverse diffusion down to 2.5~mm/$sqrt{mathrm{m}}$ from the 10.5~mm/$sqrt{mathrm{m}}$ of pure xenon. The longitudinal diffusion remains around 4~mm/$sqrt{mathrm{m}}$. Light production studies have been performed as well. They show that the relative variation in energy resolution introduced by such a change does not exceed a few percent, which leaves the energy resolution practically unchanged. The technical caveats of using photomultipliers close to an helium atmosphere are also discussed in detail.
A high-pressure xenon gas time projection chamber, with a unique cellular readout structure based on electroluminescence, has been developed for a large-scale neutrinoless double-beta decay search. In order to evaluate the detector performance and va lidate its design, a 180~L size prototype is being constructed and its commissioning with partial detector has been performed. The obtained energy resolution at 4.0~bar is 1.73 $pm$ 0.07% (FWHM) at 511 keV. The energy resolution at the $^{136}$Xe neutrinoless double-beta decay Q-value is estimated to be between 0.79 and 1.52% (FWHM) by extrapolation. Reconstructed event topologies show patterns peculiar to track end-point which can be used to distinguish $0 ubetabeta$ signals from gamma-ray backgrounds.
High pressure gas time projection chambers (HPGTPCs) are made with a variety of materials, many of which have not been well characterized in high pressure noble gas environments. As HPGTPCs are scaled up in size toward ton-scale detectors, assemblies become larger and more complex, creating a need for detailed understanding of how structural supports and high voltage insulators behave. This includes the identification of materials with predictable mechanical properties and without surface charge accumulation that may lead to field deformation or sparking. This paper explores the mechanical and electrical effects of high pressure gas environments on insulating polymers PTFE, HDPE, PEEK, POM and UHMW in Argon and Xenon, including studying absorption, swelling and high voltage insulation strength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا