ترغب بنشر مسار تعليمي؟ اضغط هنا

TequilaGAN: How to easily identify GAN samples

62   0   0.0 ( 0 )
 نشر من قبل Rafael Valle
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we show strategies to easily identify fake samples generated with the Generative Adversarial Network framework. One strategy is based on the statistical analysis and comparison of raw pixel values and features extracted from them. The other strategy learns formal specifications from the real data and shows that fake samples violate the specifications of the real data. We show that fake samples produced with GANs have a universal signature that can be used to identify fake samples. We provide results on MNIST, CIFAR10, music and speech data.

قيم البحث

اقرأ أيضاً

Binary Neural Networks (BNNs) show promising progress in reducing computational and memory costs but suffer from substantial accuracy degradation compared to their real-valued counterparts on large-scale datasets, e.g., ImageNet. Previous work mainly focused on reducing quantization errors of weights and activations, whereby a series of approximation methods and sophisticated training tricks have been proposed. In this work, we make several observations that challenge conventional wisdom. We revisit some commonly used techniques, such as scaling factors and custom gradients, and show that these methods are not crucial in training well-performing BNNs. On the contrary, we suggest several design principles for BNNs based on the insights learned and demonstrate that highly accurate BNNs can be trained from scratch with a simple training strategy. We propose a new BNN architecture BinaryDenseNet, which significantly surpasses all existing 1-bit CNNs on ImageNet without tricks. In our experiments, BinaryDenseNet achieves 18.6% and 7.6% relative improvement over the well-known XNOR-Network and the current state-of-the-art Bi-Real Net in terms of top-1 accuracy on ImageNet, respectively.
70 - Jiantao Wu , Lin Wang 2020
Disentanglement is a highly desirable property of representation due to its similarity with humans understanding and reasoning. This improves interpretability, enables the performance of down-stream tasks, and enables controllable generative models. However, this domain is challenged by the abstract notion and incomplete theories to support unsupervised disentanglement learning. We demonstrate the data itself, such as the orientation of images, plays a crucial role in disentanglement and instead of the factors, and the disentangled representations align the latent variables with the action sequences. We further introduce the concept of disentangling action sequences which facilitates the description of the behaviours of the existing disentangling approaches. An analogy for this process is to discover the commonality between the things and categorizing them. Furthermore, we analyze the inductive biases on the data and find that the latent information thresholds are correlated with the significance of the actions. For the supervised and unsupervised settings, we respectively introduce two methods to measure the thresholds. We further propose a novel framework, fractional variational autoencoder (FVAE), to disentangle the action sequences with different significance step-by-step. Experimental results on dSprites and 3D Chairs show that FVAE improves the stability of disentanglement.
Many recent works on knowledge distillation have provided ways to transfer the knowledge of a trained network for improving the learning process of a new one, but finding a good technique for knowledge distillation is still an open problem. In this p aper, we provide a new perspective based on a decision boundary, which is one of the most important component of a classifier. The generalization performance of a classifier is closely related to the adequacy of its decision boundary, so a good classifier bears a good decision boundary. Therefore, transferring information closely related to the decision boundary can be a good attempt for knowledge distillation. To realize this goal, we utilize an adversarial attack to discover samples supporting a decision boundary. Based on this idea, to transfer more accurate information about the decision boundary, the proposed algorithm trains a student classifier based on the adversarial samples supporting the decision boundary. Experiments show that the proposed method indeed improves knowledge distillation and achieves the state-of-the-arts performance.
Humans can only interact with part of the surrounding environment due to biological restrictions. Therefore, we learn to reason the spatial relationships across a series of observations to piece together the surrounding environment. Inspired by such behavior and the fact that machines also have computational constraints, we propose underline{CO}nditional underline{CO}ordinate GAN (COCO-GAN) of which the generator generates images by parts based on their spatial coordinates as the condition. On the other hand, the discriminator learns to justify realism across multiple assembled patches by global coherence, local appearance, and edge-crossing continuity. Despite the full images are never generated during training, we show that COCO-GAN can produce textbf{state-of-the-art-quality} full images during inference. We further demonstrate a variety of novel applications enabled by teaching the network to be aware of coordinates. First, we perform extrapolation to the learned coordinate manifold and generate off-the-boundary patches. Combining with the originally generated full image, COCO-GAN can produce images that are larger than training samples, which we called beyond-boundary generation. We then showcase panorama generation within a cylindrical coordinate system that inherently preserves horizontally cyclic topology. On the computation side, COCO-GAN has a built-in divide-and-conquer paradigm that reduces memory requisition during training and inference, provides high-parallelism, and can generate parts of images on-demand.
In this work, we investigate semi-supervised learning (SSL) for image classification using adversarial training. Previous results have illustrated that generative adversarial networks (GANs) can be used for multiple purposes. Triple-GAN, which aims t o jointly optimize model components by incorporating three players, generates suitable image-label pairs to compensate for the lack of labeled data in SSL with improved benchmark performance. Conversely, Bad (or complementary) GAN, optimizes generation to produce complementary data-label pairs and force a classifiers decision boundary to lie between data manifolds. Although it generally outperforms Triple-GAN, Bad GAN is highly sensitive to the amount of labeled data used for training. Unifying these two approaches, we present unified-GAN (UGAN), a novel framework that enables a classifier to simultaneously learn from both good and bad samples through adversarial training. We perform extensive experiments on various datasets and demonstrate that UGAN: 1) achieves state-of-the-art performance among other deep generative models, and 2) is robust to variations in the amount of labeled data used for training.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا