ترغب بنشر مسار تعليمي؟ اضغط هنا

Human Mobility Patterns Modelling using CDRs

68   0   0.0 ( 0 )
 نشر من قبل Suhad Faisal Behadili
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The research objectives are exploring characteristics of human mobility patterns, subsequently modelling them mathematically depending on inter-event time and traveled distances parameters using CDRs (Call Detailed Records). The observations are obtained from Armada festival in France. Understanding, modelling and simulating human mobility among urban regions is excitement approach, due to itsimportance in rescue situations for various events either indoor events like evacuation of buildings or outdoor ones like public assemblies,community evacuation in casesemerged during emergency situations, moreover serves urban planning and smart cities.



قيم البحث

اقرأ أيضاً

Understanding the patterns of mobility of individuals is crucial for a number of reasons, from city planning to disaster management. There are two common ways of quantifying the amount of travel between locations: by direct observations that often in volve privacy issues, e.g., tracking mobile phone locations, or by estimations from models. Typically, such models build on accurate knowledge of the population size at each location. However, when this information is not readily available, their applicability is rather limited. As mobile phones are ubiquitous, our aim is to investigate if mobility patterns can be inferred from aggregated mobile phone call data alone. Using data released by Orange for Ivory Coast, we show that human mobility is well predicted by a simple model based on the frequency of mobile phone calls between two locations and their geographical distance. We argue that the strength of the model comes from directly incorporating the social dimension of mobility. Furthermore, as only aggregated call data is required, the model helps to avoid potential privacy problems.
Public stakeholders implement several policies and regulations to tackle gender gaps, fostering the change in the cultural constructs associated with gender. One way to quantify if such changes elicit gender equality is by studying mobility. In this work, we study the daily mobility patterns of women and men occurring in Medellin (Colombia) in two years: 2005 and 2017. Specifically, we focus on the spatiotemporal differences in the travels and find that purpose of travel and occupation characterise each gender differently. We show that women tend to make shorter trips, corroborating Ravensteins Laws of Migration. Our results indicate that urban mobility in Colombia seems to behave in agreement with the archetypal case studied by Ravenstein.
236 - M.C. Gonzalez , C.A. Hidalgo , 2008
Despite their importance for urban planning, traffic forecasting, and the spread of biological and mobile viruses, our understanding of the basic laws governing human motion remains limited thanks to the lack of tools to monitor the time resolved loc ation of individuals. Here we study the trajectory of 100,000 anonymized mobile phone users whose position is tracked for a six month period. We find that in contrast with the random trajectories predicted by the prevailing Levy flight and random walk models, human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time independent characteristic length scale and a significant probability to return to a few highly frequented locations. After correcting for differences in travel distances and the inherent anisotropy of each trajectory, the individual travel patterns collapse into a single spatial probability distribution, indicating that despite the diversity of their travel history, humans follow simple reproducible patterns. This inherent similarity in travel patterns could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning and agent based modeling.
The outbreak of COVID-19 highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has been proved to be associated with the viral transmission. In this study, we analyzed 587 million tweets worldwide to see how global collaborative efforts in reducing human mobility are reflected from the user-generated information at the global, country, and the U.S. state scale. Considering the multifaceted nature of mobility, we propose two types of distance: the single-day distance and the cross-day distance. To quantify the responsiveness in certain geographical regions, we further propose a mobility-based responsive index (MRI) that captures the overall degree of mobility changes within a time window. The results suggest that mobility patterns obtained from Twitter data are amendable to quantitatively reflect the mobility dynamics. Globally, the proposed two distances had greatly deviated from their baselines after March 11, 2020, when WHO declared COVID-19 as a pandemic. The considerably less periodicity after the declaration suggests that the protection measures have obviously affected peoples travel routines. The country scale comparisons reveal the discrepancies in responsiveness, evidenced by the contrasting mobility patterns in different epidemic phases. We find that the triggers of mobility changes correspond well with the national announcements of mitigation measures. In the U.S., the influence of the COVID-19 pandemic on mobility is distinct. However, the impacts varied substantially among states. The strong mobility recovering momentum is further fueled by the Black Lives Matter protests, potentially fostering the second wave of infections in the U.S.
Understanding how people move in the urban area is important for solving urbanization issues, such as traffic management, urban planning, epidemic control, and communication network improvement. Leveraging recent availability of large amounts of dive rse crowdsensed data, many studies have made contributions to this field in various aspects. They need proper review and summary. In this paper, therefore, we first review these recent studies with a proper taxonomy with corresponding examples. Then, based on the experience learnt from the studies, we provide a comprehensive tutorial for future research, which introduces and discusses popular crowdsensed data types, different human mobility subjects, and common data preprocessing and analysis methods. Special emphasis is made on the matching between data types and mobility subjects. Finally, we present two research projects as case studies to demonstrate the entire process of understanding urban human mobility through crowdsensed data in city-wide scale and building-wide scale respectively. Beyond demonstration purpose, the two case studies also make contributions to their category of certain crowdsensed data type and mobility subject.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا