ترغب بنشر مسار تعليمي؟ اضغط هنا

Gender Patterns of Human Mobility in Colombia: Reexamining Ravensteins Laws of Migration

66   0   0.0 ( 0 )
 نشر من قبل Alessio Cardillo
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Public stakeholders implement several policies and regulations to tackle gender gaps, fostering the change in the cultural constructs associated with gender. One way to quantify if such changes elicit gender equality is by studying mobility. In this work, we study the daily mobility patterns of women and men occurring in Medellin (Colombia) in two years: 2005 and 2017. Specifically, we focus on the spatiotemporal differences in the travels and find that purpose of travel and occupation characterise each gender differently. We show that women tend to make shorter trips, corroborating Ravensteins Laws of Migration. Our results indicate that urban mobility in Colombia seems to behave in agreement with the archetypal case studied by Ravenstein.



قيم البحث

اقرأ أيضاً

The research objectives are exploring characteristics of human mobility patterns, subsequently modelling them mathematically depending on inter-event time and traveled distances parameters using CDRs (Call Detailed Records). The observations are obta ined from Armada festival in France. Understanding, modelling and simulating human mobility among urban regions is excitement approach, due to itsimportance in rescue situations for various events either indoor events like evacuation of buildings or outdoor ones like public assemblies,community evacuation in casesemerged during emergency situations, moreover serves urban planning and smart cities.
Predicting human mobility flows at different spatial scales is challenged by the heterogeneity of individual trajectories and the multi-scale nature of transportation networks. As vast amounts of digital traces of human behaviour become available, an opportunity arises to improve mobility models by integrating into them proxy data on mobility collected by a variety of digital platforms and location-aware services. Here we propose a hybrid model of human mobility that integrates a large-scale publicly available dataset from a popular photo-sharing system with the classical gravity model, under a stacked regression procedure. We validate the performance and generalizability of our approach using two ground-truth datasets on air travel and daily commuting in the United States: using two different cross-validation schemes we show that the hybrid model affords enhanced mobility prediction at both spatial scales.
How can we model influence between individuals in a social system, even when the network of interactions is unknown? In this article, we review the literature on the influence model, which utilizes independent time series to estimate how much the sta te of one actor affects the state of another actor in the system. We extend this model to incorporate dynamical parameters that allow us to infer how influence changes over time, and we provide three examples of how this model can be applied to simulated and real data. The results show that the model can recover known estimates of influence, it generates results that are consistent with other measures of social networks, and it allows us to uncover important shifts in the way states may be transmitted between actors at different points in time.
The policies implemented to hinder the COVID-19 outbreak represent one of the largest critical events in history. The understanding of this process is fundamental for crafting and tailoring post-disaster relief. In this work we perform a massive data analysis, through geolocalized data from 13M Facebook users, on how such a stress affected mobility patterns in France, Italy and UK. We find that the general reduction of the overall efficiency in the network of movements is accompanied by geographical fragmentation with a massive reduction of long-range connections. The impact, however, differs among nations according to their initial mobility structure. Indeed, we find that the mobility network after the lockdown is more concentrated in the case of France and UK and more distributed in Italy. Such a process can be approximated through percolation to quantify the substantial impact of the lockdown.
In 2020, countries affected by the COVID-19 pandemic implemented various non-pharmaceutical interventions to contrast the spread of the virus and its impact on their healthcare systems and economies. Using Italian data at different geographic scales, we investigate the relationship between human mobility, which subsumes many facets of the populations response to the changing situation, and the spread of COVID-19. Leveraging mobile phone data from February through September 2020, we find a striking relationship between the decrease in mobility flows and the net reproduction number. We find that the time needed to switch off mobility and bring the net reproduction number below the critical threshold of 1 is about one week. Moreover, we observe a strong relationship between the number of days spent above such threshold before the lockdown-induced drop in mobility flows and the total number of infections per 100k inhabitants. Estimating the statistical effect of mobility flows on the net reproduction number over time, we document a 2-week lag positive association, strong in March and April, and weaker but still significant in June. Our study demonstrates the value of big mobility data to monitor the epidemic and inform control interventions during its unfolding.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا