ﻻ يوجد ملخص باللغة العربية
Axons are linear processes of nerve cells that can range from a few tens of micrometers up to meters in length. In addition to external cues, the length of an axon is also regulated by unknown internal mechanisms. Molecular motors have been suggested to generate oscillations with an axon length-dependent frequency that could be used to measure an axons extension. Here, we present a mechanism that depends on the spectral decomposition of the oscillatory signal to determine the axon length.
Genetic feedback loops in cells break detailed balance and involve bimolecular reactions; hence exact solutions revealing the nature of the stochastic fluctuations in these loops are lacking. We here consider the master equation for a gene regulatory
Axonal growth and guidance at the ventral floor plate is here followed $textit{in vivo}$ in real time at high resolution by light-sheet microscopy along several hundred micrometers of the zebrafish spinal cord. The recordings show the strikingly ster
Filopodia are long, finger-like membrane tubes supported by cytoskeletal filaments. Their shape is determined by the stiffness of the actin filament bundles found inside them and by the interplay between the surface tension and bending rigidity of th
The viscous liquid surrounding a hair bundle dissipates energy and dampens oscillations, which poses a fundamental physical challenge to the high sensitivity and sharp frequency selectivity of hearing. To identify the mechanical forces at play, we co
Motivated by the formation of ring-like filament structures in the cortex of plant and animal cells, we study the dynamics of a two-dimensional layer of cytoskeletal filaments and motor proteins near a surface by a general continuum theory. As a resu