ﻻ يوجد ملخص باللغة العربية
Motivated by the formation of ring-like filament structures in the cortex of plant and animal cells, we study the dynamics of a two-dimensional layer of cytoskeletal filaments and motor proteins near a surface by a general continuum theory. As a result of active processes, dynamic patterns of filament orientation and density emerge via instabilities. We show that self-organization phenomena can lead to the formation of stationary and oscillating rings. We present state diagrams which reveal a rich scenario of asymptotic behaviors and discuss the role of boundary conditions.
Genetically identical cells under the same environmental conditions can show strong variations in protein copy numbers due to inherently stochastic events in individual cells. We here develop a theoretical framework to address how variations in enzym
In this work, we study in detail the distribution of stochastic forces generated by the molecular motors activity, in the actin cortex of pre-muscular cells. By combining active and passive rheology experiments, performed on the same micro-bead bound
Filopodia are bundles of actin filaments that extend out ahead of the leading edge of a crawling cell to probe its upcoming environment. {it In vitro} experiments [D. Vignjevic {it et al.}, J. Cell Biol. {bf 160}, 951 (2003)] have determined the mini
The internal cell wall structure of the bacterium Lactobacillus helveticus has been observed in situ in aqueous solution using an atomic force microscope (AFM). The AFM tip was used not only for imaging but presumably to remove mechanically large pat
Many cellular processes are tightly connected to the dynamics of microtubules (MTs). While in neuronal axons MTs mainly regulate intracellular trafficking, they participate in cytoskeleton reorganization in many other eukaryotic cells, enabling the c