ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hierarchical Bayesian Linear Regression Model with Local Features for Stochastic Dynamics Approximation

161   0   0.0 ( 0 )
 نشر من قبل Behnoosh Parsa
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the challenges in model-based control of stochastic dynamical systems is that the state transition dynamics are involved, and it is not easy or efficient to make good-quality predictions of the states. Moreover, there are not many representational models for the majority of autonomous systems, as it is not easy to build a compact model that captures the entire dynamical subtleties and uncertainties. In this work, we present a hierarchical Bayesian linear regression model with local features to learn the dynamics of a micro-robotic system as well as two simpler examples, consisting of a stochastic mass-spring damper and a stochastic double inverted pendulum on a cart. The model is hierarchical since we assume non-stationary priors for the model parameters. These non-stationary priors make the model more flexible by imposing priors on the priors of the model. To solve the maximum likelihood (ML) problem for this hierarchical model, we use the variational expectation maximization (EM) algorithm, and enhance the procedure by introducing hidden target variables. The algorithm yields parsimonious model structures, and consistently provides fast and accurate predictions for all our examples involving large training and test sets. This demonstrates the effectiveness of the method in learning stochastic dynamics, which makes it suitable for future use in a paradigm, such as model-based reinforcement learning, to compute optimal control policies in real time.

قيم البحث

اقرأ أيضاً

192 - Vera Shalaeva 2019
In this paper, we improve the PAC-Bayesian error bound for linear regression derived in Germain et al. [10]. The improvements are twofold. First, the proposed error bound is tighter, and converges to the generalization loss with a well-chosen tempera ture parameter. Second, the error bound also holds for training data that are not independently sampled. In particular, the error bound applies to certain time series generated by well-known classes of dynamical models, such as ARX models.
In Bayesian classification, it is important to establish a probabilistic model for each class for likelihood estimation. Most of the previous methods modeled the probability distribution in the whole sample space. However, real-world problems are usu ally too complex to model in the whole sample space; some fundamental assumptions are required to simplify the global model, for example, the class conditional independence assumption for naive Bayesian classification. In this paper, with the insight that the distribution in a local sample space should be simpler than that in the whole sample space, a local probabilistic model established for a local region is expected much simpler and can relax the fundamental assumptions that may not be true in the whole sample space. Based on these advantages we propose establishing local probabilistic models for Bayesian classification. In addition, a Bayesian classifier adopting a local probabilistic model can even be viewed as a generalized local classification model; by tuning the size of the local region and the corresponding local model assumption, a fitting model can be established for a particular classification problem. The experimental results on several real-world datasets demonstrate the effectiveness of local probabilistic models for Bayesian classification.
Variational dropout (VD) is a generalization of Gaussian dropout, which aims at inferring the posterior of network weights based on a log-uniform prior on them to learn these weights as well as dropout rate simultaneously. The log-uniform prior not o nly interprets the regularization capacity of Gaussian dropout in network training, but also underpins the inference of such posterior. However, the log-uniform prior is an improper prior (i.e., its integral is infinite) which causes the inference of posterior to be ill-posed, thus restricting the regularization performance of VD. To address this problem, we present a new generalization of Gaussian dropout, termed variational Bayesian dropout (VBD), which turns to exploit a hierarchical prior on the network weights and infer a new joint posterior. Specifically, we implement the hierarchical prior as a zero-mean Gaussian distribution with variance sampled from a uniform hyper-prior. Then, we incorporate such a prior into inferring the joint posterior over network weights and the variance in the hierarchical prior, with which both the network training and the dropout rate estimation can be cast into a joint optimization problem. More importantly, the hierarchical prior is a proper prior which enables the inference of posterior to be well-posed. In addition, we further show that the proposed VBD can be seamlessly applied to network compression. Experiments on both classification and network compression tasks demonstrate the superior performance of the proposed VBD in terms of regularizing network training.
We classify two types of Hierarchical Bayesian Model found in the literature as Hierarchical Prior Model (HPM) and Hierarchical Stochastic Model (HSM). Then, we focus on studying the theoretical implications of the HSM. Using examples of polynomial f unctions, we show that the HSM is capable of separating different types of uncertainties in a system and quantifying uncertainty of reduced order models under the Bayesian model class selection framework. To tackle the huge computational cost for analyzing HSM, we propose an efficient approximation scheme based on Importance Sampling and Empirical Interpolation Method. We illustrate our method using two examples - a Molecular Dynamics simulation for Krypton and a pharmacokinetic/pharmacodynamic model for cancer drug.
Despite their success, kernel methods suffer from a massive computational cost in practice. In this paper, in lieu of commonly used kernel expansion with respect to $N$ inputs, we develop a novel optimal design maximizing the entropy among kernel fea tures. This procedure results in a kernel expansion with respect to entropic optimal features (EOF), improving the data representation dramatically due to features dissimilarity. Under mild technical assumptions, our generalization bound shows that with only $O(N^{frac{1}{4}})$ features (disregarding logarithmic factors), we can achieve the optimal statistical accuracy (i.e., $O(1/sqrt{N})$). The salient feature of our design is its sparsity that significantly reduces the time and space cost. Our numerical experiments on benchmark datasets verify the superiority of EOF over the state-of-the-art in kernel approximation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا