ﻻ يوجد ملخص باللغة العربية
We classify two types of Hierarchical Bayesian Model found in the literature as Hierarchical Prior Model (HPM) and Hierarchical Stochastic Model (HSM). Then, we focus on studying the theoretical implications of the HSM. Using examples of polynomial functions, we show that the HSM is capable of separating different types of uncertainties in a system and quantifying uncertainty of reduced order models under the Bayesian model class selection framework. To tackle the huge computational cost for analyzing HSM, we propose an efficient approximation scheme based on Importance Sampling and Empirical Interpolation Method. We illustrate our method using two examples - a Molecular Dynamics simulation for Krypton and a pharmacokinetic/pharmacodynamic model for cancer drug.
Most COVID-19 predictive modeling efforts use statistical or mathematical models to predict national- and state-level COVID-19 cases or deaths in the future. These approaches assume parameters such as reproduction time, test positivity rate, hospital
We consider the problem of selecting deterministic or stochastic models for a biological, ecological, or environmental dynamical process. In most cases, one prefers either deterministic or stochastic models as candidate models based on experience or
Bayesian inference methods are applied within a Bayesian hierarchical modelling framework to the problems of joint state and parameter estimation, and of state forecasting. We explore and demonstrate the ideas in the context of a simple nonlinear mar
We introduce a flexible, scalable Bayesian inference framework for nonlinear dynamical systems characterised by distinct and hierarchical variability at the individual, group, and population levels. Our model class is a generalisation of nonlinear mi
One of the challenges in model-based control of stochastic dynamical systems is that the state transition dynamics are involved, and it is not easy or efficient to make good-quality predictions of the states. Moreover, there are not many representati