ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Symbolic Execution for Detecting Concurrency-Related Cache Timing Leaks

140   0   0.0 ( 0 )
 نشر من قبل Chao Wang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The timing characteristics of cache, a high-speed storage between the fast CPU and the slowmemory, may reveal sensitive information of a program, thus allowing an adversary to conduct side-channel attacks. Existing methods for detecting timing leaks either ignore cache all together or focus only on passive leaks generated by the program itself, without considering leaks that are made possible by concurrently running some other threads. In this work, we show that timing-leak-freedom is not a compositional property: a program that is not leaky when running alone may become leaky when interleaved with other threads. Thus, we develop a new method, named adversarial symbolic execution, to detect such leaks. It systematically explores both the feasible program paths and their interleavings while modeling the cache, and leverages an SMT solver to decide if there are timing leaks. We have implemented our method in LLVM and evaluated it on a set of real-world ciphers with 14,455 lines of C code in total. Our experiments demonstrate both the efficiency of our method and its effectiveness in detecting side-channel leaks.



قيم البحث

اقرأ أيضاً

CPU cache is a limited but crucial storage component in modern processors, whereas the cache timing side-channel may inadvertently leak information through the physically measurable timing variance. Speculative execution, an essential processor optim ization, and a source of such variances, can cause severe detriment on deliberate branch mispredictions. Despite static analysis could qualitatively verify the timing-leakage-free property under speculative execution, it is incapable of producing endorsements including inputs and speculated flows to diagnose leaks in depth. This work proposes a new symbolic execution based method, SpecuSym, for precisely detecting cache timing leaks introduced by speculative execution. Given a program (leakage-free in non-speculative execution), SpecuSymsystematically explores the program state space, models speculative behavior at conditional branches, and accumulates the cache side effects along with subsequent path explorations. During the dynamic execution, SpecuSymconstructs leak predicates for memory visits according to the specified cache model and conducts a constraint-solving based cache behavior analysis to inspect the new cache behaviors. We have implementedSpecuSymatop KLEE and evaluated it against 15 open-source benchmarks. Experimental results show thatSpecuSymsuccessfully detected from 2 to 61 leaks in 6 programs under 3 different cache settings and identified false positives in 2 programs reported by recent work.
Spectre attacks disclosed in early 2018 expose data leakage scenarios via cache side channels. Specifically, speculatively executed paths due to branch mis-prediction may bring secret data into the cache which are then exposed via cache side channels even after the speculative execution is squashed. Symbolic execution is a well-known test generation method to cover program paths at the level of the application software. In this paper, we extend symbolic execution with modelingof cache and speculative execution. Our tool KLEESPECTRE, built on top of the KLEE symbolic execution engine, can thus provide a testing engine to check for the data leakage through cache side-channel as shown via Spectre attacks. Our symbolic cache model can verify whether the sensitive data leakage due to speculative execution can be observed by an attacker at a given program point. Our experiments show that KLEESPECTREcan effectively detect data leakage along speculatively executed paths and our cache model can further make the leakage detection much more precise.
We propose a method, based on program analysis and transformation, for eliminating timing side channels in software code that implements security-critical applications. Our method takes as input the original program together with a list of secret var iables (e.g., cryptographic keys, security tokens, or passwords) and returns the transformed program as output. The transformed program is guaranteed to be functionally equivalent to the original program and free of both instruction- and cache-timing side channels. Specifically, we ensure that the number of CPU cycles taken to execute any path is independent of the secret data, and the cache behavior of memory accesses, in terms of hits and misses, is independent of the secret data. We have implemented our method in LLVM and validated its effectiveness on a large set of applications, which are cryptographic libraries with 19,708 lines of C/C++ code in total. Our experiments show the method is both scalable for real applications and effective in eliminating timing side channels.
Although the emergence of the programmable smart contract makes blockchain systems easily embrace a wider range of industrial areas, how to execute smart contracts efficiently becomes a big challenge nowadays. Due to the existence of Byzantine nodes, the mechanism of executing smart contracts is quite different from that in database systems, so that existing successful concurrency control protocols in database systems cannot be employed directly. Moreover, even though smart contract execution follows a two-phase style, i.e, the miner node executes a batch of smart contracts in the first phase and the validators replay them in the second phase, existing parallel solutions only focus on the optimization in the first phase, but not including the second phase. In this paper, we propose a novel efficient concurrency control scheme which is the first one to do optimization in both phases. Specifically, (i) in the first phase, we give a variant of OCC (Optimistic Concurrency Control) protocol based on {em batching} feature to improve the concurrent execution efficiency for the miner and produce a schedule log with high parallelism for validators. Also, a graph partition algorithm is devised to divide the original schedule log into small pieces and further reduce the communication cost; and (ii) in the second phase, we give a deterministic OCC protocol to replay all smart contracts efficiently on multi-core validators where all cores can replay smart contracts independently. Theoretical analysis and extensive experimental results illustrate that the proposed scheme outperforms state-of-art solutions significantly.
Symbolic execution is a powerful technique for program analysis. However, it has many limitations in practical applicability: the path explosion problem encumbers scalability, the need for language-specific implementation, the inability to handle com plex dependencies, and the limited expressiveness of theories supported by underlying satisfiability checkers. Often, relationships between variables of interest are not expressible directly as purely symbolic constraints. To this end, we present a new approach -- neuro-symbolic execution -- which learns an approximation of the relationship as a neural net. It features a constraint solver that can solve mixed constraints, involving both symbolic expressions and neural network representation. To do so, we envision such constraint solving as procedure combining SMT solving and gradient-based optimization. We demonstrate the utility of neuro-symbolic execution in constructing exploits for buffer overflows. We report success on 13/14 programs which have difficult constraints, known to require specialized extensions to symbolic execution. In addition, our technique solves $100$% of the given neuro-symbolic constraints in $73$ programs from standard verification and invariant synthesis benchmarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا