ﻻ يوجد ملخص باللغة العربية
Although the emergence of the programmable smart contract makes blockchain systems easily embrace a wider range of industrial areas, how to execute smart contracts efficiently becomes a big challenge nowadays. Due to the existence of Byzantine nodes, the mechanism of executing smart contracts is quite different from that in database systems, so that existing successful concurrency control protocols in database systems cannot be employed directly. Moreover, even though smart contract execution follows a two-phase style, i.e, the miner node executes a batch of smart contracts in the first phase and the validators replay them in the second phase, existing parallel solutions only focus on the optimization in the first phase, but not including the second phase. In this paper, we propose a novel efficient concurrency control scheme which is the first one to do optimization in both phases. Specifically, (i) in the first phase, we give a variant of OCC (Optimistic Concurrency Control) protocol based on {em batching} feature to improve the concurrent execution efficiency for the miner and produce a schedule log with high parallelism for validators. Also, a graph partition algorithm is devised to divide the original schedule log into small pieces and further reduce the communication cost; and (ii) in the second phase, we give a deterministic OCC protocol to replay all smart contracts efficiently on multi-core validators where all cores can replay smart contracts independently. Theoretical analysis and extensive experimental results illustrate that the proposed scheme outperforms state-of-art solutions significantly.
Concurrency control algorithms are key determinants of the performance of in-memory databases. Existing algorithms are designed to work well for certain workloads. For example, optimistic concurrency control (OCC) is better than two-phase-locking (2P
Large commercial buildings are complex cyber-physical systems containing expensive and critical equipment that ensure the safety and comfort of their numerous occupants. Yet occupant and visitor access to spaces and equipment within these buildings a
The timing characteristics of cache, a high-speed storage between the fast CPU and the slowmemory, may reveal sensitive information of a program, thus allowing an adversary to conduct side-channel attacks. Existing methods for detecting timing leaks
Multicore CPUs and large memories are increasingly becoming the norm in modern computer systems. However, current database management systems (DBMSs) are generally ineffective in exploiting the parallelism of such systems. In particular, contention c
Recent attacks exploiting errors in smart contract code had devastating consequences thereby questioning the benefits of this technology. It is currently highly challenging to fix errors and deploy a patched contract in time. Instant patching is espe