ترغب بنشر مسار تعليمي؟ اضغط هنا

Neuro-Symbolic Execution: The Feasibility of an Inductive Approach to Symbolic Execution

65   0   0.0 ( 0 )
 نشر من قبل Shiqi Shen
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Symbolic execution is a powerful technique for program analysis. However, it has many limitations in practical applicability: the path explosion problem encumbers scalability, the need for language-specific implementation, the inability to handle complex dependencies, and the limited expressiveness of theories supported by underlying satisfiability checkers. Often, relationships between variables of interest are not expressible directly as purely symbolic constraints. To this end, we present a new approach -- neuro-symbolic execution -- which learns an approximation of the relationship as a neural net. It features a constraint solver that can solve mixed constraints, involving both symbolic expressions and neural network representation. To do so, we envision such constraint solving as procedure combining SMT solving and gradient-based optimization. We demonstrate the utility of neuro-symbolic execution in constructing exploits for buffer overflows. We report success on 13/14 programs which have difficult constraints, known to require specialized extensions to symbolic execution. In addition, our technique solves $100$% of the given neuro-symbolic constraints in $73$ programs from standard verification and invariant synthesis benchmarks.



قيم البحث

اقرأ أيضاً

CPU cache is a limited but crucial storage component in modern processors, whereas the cache timing side-channel may inadvertently leak information through the physically measurable timing variance. Speculative execution, an essential processor optim ization, and a source of such variances, can cause severe detriment on deliberate branch mispredictions. Despite static analysis could qualitatively verify the timing-leakage-free property under speculative execution, it is incapable of producing endorsements including inputs and speculated flows to diagnose leaks in depth. This work proposes a new symbolic execution based method, SpecuSym, for precisely detecting cache timing leaks introduced by speculative execution. Given a program (leakage-free in non-speculative execution), SpecuSymsystematically explores the program state space, models speculative behavior at conditional branches, and accumulates the cache side effects along with subsequent path explorations. During the dynamic execution, SpecuSymconstructs leak predicates for memory visits according to the specified cache model and conducts a constraint-solving based cache behavior analysis to inspect the new cache behaviors. We have implementedSpecuSymatop KLEE and evaluated it against 15 open-source benchmarks. Experimental results show thatSpecuSymsuccessfully detected from 2 to 61 leaks in 6 programs under 3 different cache settings and identified false positives in 2 programs reported by recent work.
194 - Lili Mou , Zhengdong Lu , Hang Li 2016
Building neural networks to query a knowledge base (a table) with natural language is an emerging research topic in deep learning. An executor for table querying typically requires multiple steps of execution because queries may have complicated stru ctures. In previous studies, researchers have developed either fully distributed executors or symbolic executors for table querying. A distributed executor can be trained in an end-to-end fashion, but is weak in terms of execution efficiency and explicit interpretability. A symbolic executor is efficient in execution, but is very difficult to train especially at initial stages. In this paper, we propose to couple distributed and symbolic execution for natural language queries, where the symbolic executor is pretrained with the distributed executors intermediate execution results in a step-by-step fashion. Experiments show that our approach significantly outperforms both distributed and symbolic executors, exhibiting high accuracy, high learning efficiency, high execution efficiency, and high interpretability.
The timing characteristics of cache, a high-speed storage between the fast CPU and the slowmemory, may reveal sensitive information of a program, thus allowing an adversary to conduct side-channel attacks. Existing methods for detecting timing leaks either ignore cache all together or focus only on passive leaks generated by the program itself, without considering leaks that are made possible by concurrently running some other threads. In this work, we show that timing-leak-freedom is not a compositional property: a program that is not leaky when running alone may become leaky when interleaved with other threads. Thus, we develop a new method, named adversarial symbolic execution, to detect such leaks. It systematically explores both the feasible program paths and their interleavings while modeling the cache, and leverages an SMT solver to decide if there are timing leaks. We have implemented our method in LLVM and evaluated it on a set of real-world ciphers with 14,455 lines of C code in total. Our experiments demonstrate both the efficiency of our method and its effectiveness in detecting side-channel leaks.
Spectre attacks disclosed in early 2018 expose data leakage scenarios via cache side channels. Specifically, speculatively executed paths due to branch mis-prediction may bring secret data into the cache which are then exposed via cache side channels even after the speculative execution is squashed. Symbolic execution is a well-known test generation method to cover program paths at the level of the application software. In this paper, we extend symbolic execution with modelingof cache and speculative execution. Our tool KLEESPECTRE, built on top of the KLEE symbolic execution engine, can thus provide a testing engine to check for the data leakage through cache side-channel as shown via Spectre attacks. Our symbolic cache model can verify whether the sensitive data leakage due to speculative execution can be observed by an attacker at a given program point. Our experiments show that KLEESPECTREcan effectively detect data leakage along speculatively executed paths and our cache model can further make the leakage detection much more precise.
Computational context understanding refers to an agents ability to fuse disparate sources of information for decision-making and is, therefore, generally regarded as a prerequisite for sophisticated machine reasoning capabilities, such as in artifici al intelligence (AI). Data-driven and knowledge-driven methods are two classical techniques in the pursuit of such machine sense-making capability. However, while data-driven methods seek to model the statistical regularities of events by making observations in the real-world, they remain difficult to interpret and they lack mechanisms for naturally incorporating external knowledge. Conversely, knowledge-driven methods, combine structured knowledge bases, perform symbolic reasoning based on axiomatic principles, and are more interpretable in their inferential processing; however, they often lack the ability to estimate the statistical salience of an inference. To combat these issues, we propose the use of hybrid AI methodology as a general framework for combining the strengths of both approaches. Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks. We further ground our discussion in two applications of neuro-symbolism and, in both cases, show that our systems maintain interpretability while achieving comparable performance, relative to the state-of-the-art.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا