ﻻ يوجد ملخص باللغة العربية
We study the statistical properties of jump processes in a bounded domain that are driven by Poisson white noise. We derive the corresponding Kolmogorov-Feller equation and provide a general representation for its stationary solutions. Exact stationary solutions of this equation are found and analyzed in two particular cases. All our analytical findings are confirmed by numerical simulations.
We analyse various properties of stochastic Markov processes with multiplicative white noise. We take a single-variable problem as a simple example, and we later extend the analysis to the Landau-Lifshitz-Gilbert equation for the stochastic dynamics
We explore the archetype problem of an escape dynamics occurring in a symmetric double well potential when the Brownian particle is driven by {it white Levy noise} in a dynamical regime where inertial effects can safely be neglected. The behavior of
We study the non-equilibrium evolution of a one-dimensional quantum Ising chain with spatially disordered, time-dependent, transverse fields characterised by white noise correlation dynamics. We establish pre-thermalization in this model, showing tha
We investigate thermodynamics of feedback processes driven by measurement. Regarding system and memory device as a composite system, mutual information as a measure of correlation between the two constituents contributes to the entropy of the composi
We present a machine learning model for the analysis of randomly generated discrete signals, which we model as the points of a homogeneous or inhomogeneous, compound Poisson point process. Like the wavelet scattering transform introduced by S. Mallat