ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical symmetries of Markov processes with multiplicative white noise

458   0   0.0 ( 0 )
 نشر من قبل Camille Aron
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse various properties of stochastic Markov processes with multiplicative white noise. We take a single-variable problem as a simple example, and we later extend the analysis to the Landau-Lifshitz-Gilbert equation for the stochastic dynamics of a magnetic moment. In particular, we focus on the non-equilibrium transfer of angular momentum to the magnetization from a spin-polarised current of electrons, a technique which is widely used in the context of spintronics to manipulate magnetic moments. We unveil two hidden dynamical symmetries of the generating functionals of these Markovian multiplicative white-noise processes. One symmetry only holds in equilibrium and we use it to prove generic relations such as the fluctuation-dissipation theorems. Out of equilibrium, we take profit of the symmetry-breaking terms to prove fluctuation theorems. The other symmetry yields strong dynamical relations between correlation and response functions which can notably simplify the numerical analysis of these problems. Our construction allows us to clarify some misconceptions on multiplicative white-noise stochastic processes that can be found in the literature. In particular, we show that a first-order differential equation with multiplicative white noise can be transformed into an additive-noise equation, but that the latter keeps a non-trivial memory of the discretisation prescription used to define the former.



قيم البحث

اقرأ أيضاً

We study pattern formation processes in anisotropic system governed by the Kuramoto-Sivashinsky equation with multiplicative noise as a generalization of the Bradley-Harper model for ripple formation induced by ion bombardment. For both linear and no nlinear systems we study noise induced effects at ripple formation and discuss scaling behavior of the surface growth and roughness characteristics. It was found that the secondary parameters of the ion beam (beam profile and variations of an incidence angle) can crucially change the topology of patterns and the corresponding dynamics.
We study the statistical properties of jump processes in a bounded domain that are driven by Poisson white noise. We derive the corresponding Kolmogorov-Feller equation and provide a general representation for its stationary solutions. Exact stationa ry solutions of this equation are found and analyzed in two particular cases. All our analytical findings are confirmed by numerical simulations.
For a general class of diffusion processes with multiplicative noise, describing a variety of physical as well as financial phenomena, mostly typical of complex systems, we obtain the analytical solution for the moments at all times. We allow for a n on trivial time dependence of the microscopic dynamics and we analytically characterize the process evolution, possibly towards a stationary state, and the direct relationship existing between the drift and diffusion coefficients and the time scaling of the moments.
The multi-dimensional non-linear Langevin equation with multiplicative Gaussian white noises in Itos sense is made covariant with respect to non-linear transform of variables. The formalism involves no metric or affine connection, works for systems w ith or without detailed balance, and is substantially simpler than previous theories. Its relation with deterministic theory is clarified. The unitary limit and Hermitian limit of the theory are examined. Some implications on the choices of stochastic calculus are also discussed.
We study dynamical reversibility in stationary stochastic processes from an information theoretic perspective. Extending earlier work on the reversibility of Markov chains, we focus on finitary processes with arbitrarily long conditional correlations . In particular, we examine stationary processes represented or generated by edge-emitting, finite-state hidden Markov models. Surprisingly, we find pervasive temporal asymmetries in the statistics of such stationary processes with the consequence that the computational resources necessary to generate a process in the forward and reverse temporal directions are generally not the same. In fact, an exhaustive survey indicates that most stationary processes are irreversible. We study the ensuing relations between model topology in different representations, the processs statistical properties, and its reversibility in detail. A processs temporal asymmetry is efficiently captured using two canonical unifilar representations of the generating model, the forward-time and reverse-time epsilon-machines. We analyze example irreversible processes whose epsilon-machine presentations change size under time reversal, including one which has a finite number of recurrent causal states in one direction, but an infinite number in the opposite. From the forward-time and reverse-time epsilon-machines, we are able to construct a symmetrized, but nonunifilar, generator of a process---the bidirectional machine. Using the bidirectional machine, we show how to directly calculate a processs fundamental information properties, many of which are otherwise only poorly approximated via process samples. The tools we introduce and the insights we offer provide a better understanding of the many facets of reversibility and irreversibility in stochastic processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا