ترغب بنشر مسار تعليمي؟ اضغط هنا

Prediction regions through Inverse Regression

80   0   0.0 ( 0 )
 نشر من قبل Emeline Perthame
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Predict a new response from a covariate is a challenging task in regression, which raises new question since the era of high-dimensional data. In this paper, we are interested in the inverse regression method from a theoretical viewpoint. Theoretical results have already been derived for the well-known linear model, but recently, the curse of dimensionality has increased the interest of practitioners and theoreticians into generalization of those results for various estimators, calibrated for the high-dimension context. To deal with high-dimensional data, inverse regression is used in this paper. It is known to be a reliable and efficient approach when the number of features exceeds the number of observations. Indeed, under some conditions, dealing with the inverse regression problem associated to a forward regression problem drastically reduces the number of parameters to estimate and make the problem tractable. When both the responses and the covariates are multivariate, estimators constructed by the inverse regression are studied in this paper, the main result being explicit asymptotic prediction regions for the response. The performances of the proposed estimators and prediction regions are also analyzed through a simulation study and compared with usual estimators.



قيم البحث

اقرأ أيضاً

78 - Xinran Li , Peng Ding 2019
Randomization is a basis for the statistical inference of treatment effects without strong assumptions on the outcome-generating process. Appropriately using covariates further yields more precise estimators in randomized experiments. R. A. Fisher su ggested blocking on discrete covariates in the design stage or conducting analysis of covariance (ANCOVA) in the analysis stage. We can embed blocking into a wider class of experimental design called rerandomization, and extend the classical ANCOVA to more general regression adjustment. Rerandomization trumps complete randomization in the design stage, and regression adjustment trumps the simple difference-in-means estimator in the analysis stage. It is then intuitive to use both rerandomization and regression adjustment. Under the randomization-inference framework, we establish a unified theory allowing the designer and analyzer to have access to different sets of covariates. We find that asymptotically (a) for any given estimator with or without regression adjustment, rerandomization never hurts either the sampling precision or the estimated precision, and (b) for any given design with or without rerandomization, our regression-adjusted estimator never hurts the estimated precision. Therefore, combining rerandomization and regression adjustment yields better coverage properties and thus improves statistical inference. To theoretically quantify these statements, we discuss optimal regression-adjusted estimators in terms of the sampling precision and the estimated precision, and then measure the additional gains of the designer and the analyzer. We finally suggest using rerandomization in the design and regression adjustment in the analysis followed by the Huber--White robust standard error.
89 - Wenjia Wang , Yi-Hui Zhou 2020
In the multivariate regression, also referred to as multi-task learning in machine learning, the goal is to recover a vector-valued function based on noisy observations. The vector-valued function is often assumed to be of low rank. Although the mult ivariate linear regression is extensively studied in the literature, a theoretical study on the multivariate nonlinear regression is lacking. In this paper, we study reduced rank multivariate kernel ridge regression, proposed by cite{mukherjee2011reduced}. We prove the consistency of the function predictor and provide the convergence rate. An algorithm based on nuclear norm relaxation is proposed. A few numerical examples are presented to show the smaller mean squared prediction error comparing with the elementwise univariate kernel ridge regression.
102 - Daren Wang , Zifeng Zhao , Yi Yu 2020
We study a functional linear regression model that deals with functional responses and allows for both functional covariates and high-dimensional vector covariates. The proposed model is flexible and nests several functional regression models in the literature as special cases. Based on the theory of reproducing kernel Hilbert spaces (RKHS), we propose a penalized least squares estimator that can accommodate functional variables observed on discrete sample points. Besides a conventional smoothness penalty, a group Lasso-type penalty is further imposed to induce sparsity in the high-dimensional vector predictors. We derive finite sample theoretical guarantees and show that the excess prediction risk of our estimator is minimax optimal. Furthermore, our analysis reveals an interesting phase transition phenomenon that the optimal excess risk is determined jointly by the smoothness and the sparsity of the functional regression coefficients. A novel efficient optimization algorithm based on iterative coordinate descent is devised to handle the smoothness and group penalties simultaneously. Simulation studies and real data applications illustrate the promising performance of the proposed approach compared to the state-of-the-art methods in the literature.
High-dimensional linear regression has been intensively studied in the community of statistics in the last two decades. For the convenience of theoretical analyses, classical methods usually assume independent observations and sub-Gaussian-tailed err ors. However, neither of them hold in many real high-dimensional time-series data. Recently [Sun, Zhou, Fan, 2019, J. Amer. Stat. Assoc., in press] proposed Adaptive Huber Regression (AHR) to address the issue of heavy-tailed errors. They discover that the robustification parameter of the Huber loss should adapt to the sample size, the dimensionality, and the moments of the heavy-tailed errors. We progress in a vertical direction and justify AHR on dependent observations. Specifically, we consider an important dependence structure -- Markov dependence. Our results show that the Markov dependence impacts on the adaption of the robustification parameter and the estimation of regression coefficients in the way that the sample size should be discounted by a factor depending on the spectral gap of the underlying Markov chain.
In this paper, we develop uniform inference methods for the conditional mode based on quantile regression. Specifically, we propose to estimate the conditional mode by minimizing the derivative of the estimated conditional quantile function defined b y smoothing the linear quantile regression estimator, and develop two bootstrap methods, a novel pivotal bootstrap and the nonparametric bootstrap, for our conditional mode estimator. Building on high-dimensional Gaussian approximation techniques, we establish the validity of simultaneous confidence rectangles constructed from the two bootstrap methods for the conditional mode. We also extend the preceding analysis to the case where the dimension of the covariate vector is increasing with the sample size. Finally, we conduct simulation experiments and a real data analysis using U.S. wage data to demonstrate the finite sample performance of our inference method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا