ﻻ يوجد ملخص باللغة العربية
In this paper, we develop uniform inference methods for the conditional mode based on quantile regression. Specifically, we propose to estimate the conditional mode by minimizing the derivative of the estimated conditional quantile function defined by smoothing the linear quantile regression estimator, and develop two bootstrap methods, a novel pivotal bootstrap and the nonparametric bootstrap, for our conditional mode estimator. Building on high-dimensional Gaussian approximation techniques, we establish the validity of simultaneous confidence rectangles constructed from the two bootstrap methods for the conditional mode. We also extend the preceding analysis to the case where the dimension of the covariate vector is increasing with the sample size. Finally, we conduct simulation experiments and a real data analysis using U.S. wage data to demonstrate the finite sample performance of our inference method.
In the fields of clinical trials, biomedical surveys, marketing, banking, with dichotomous response variable, the logistic regression is considered as an alternative convenient approach to linear regression. In this paper, we develop a novel bootstra
Selection of important covariates and to drop the unimportant ones from a high-dimensional regression model is a long standing problem and hence have received lots of attention in the last two decades. After selecting the correct model, it is also im
Penalization procedures often suffer from their dependence on multiplying factors, whose optimal values are either unknown or hard to estimate from the data. We propose a completely data-driven calibration algorithm for this parameter in the least-sq
We apply Gaussian process (GP) regression, which provides a powerful non-parametric probabilistic method of relating inputs to outputs, to survival data consisting of time-to-event and covariate measurements. In this context, the covariates are regar
From an optimizers perspective, achieving the global optimum for a general nonconvex problem is often provably NP-hard using the classical worst-case analysis. In the case of Coxs proportional hazards model, by taking its statistical model structures