ﻻ يوجد ملخص باللغة العربية
Randomization is a basis for the statistical inference of treatment effects without strong assumptions on the outcome-generating process. Appropriately using covariates further yields more precise estimators in randomized experiments. R. A. Fisher suggested blocking on discrete covariates in the design stage or conducting analysis of covariance (ANCOVA) in the analysis stage. We can embed blocking into a wider class of experimental design called rerandomization, and extend the classical ANCOVA to more general regression adjustment. Rerandomization trumps complete randomization in the design stage, and regression adjustment trumps the simple difference-in-means estimator in the analysis stage. It is then intuitive to use both rerandomization and regression adjustment. Under the randomization-inference framework, we establish a unified theory allowing the designer and analyzer to have access to different sets of covariates. We find that asymptotically (a) for any given estimator with or without regression adjustment, rerandomization never hurts either the sampling precision or the estimated precision, and (b) for any given design with or without rerandomization, our regression-adjusted estimator never hurts the estimated precision. Therefore, combining rerandomization and regression adjustment yields better coverage properties and thus improves statistical inference. To theoretically quantify these statements, we discuss optimal regression-adjusted estimators in terms of the sampling precision and the estimated precision, and then measure the additional gains of the designer and the analyzer. We finally suggest using rerandomization in the design and regression adjustment in the analysis followed by the Huber--White robust standard error.
Completely randomized experiments have been the gold standard for drawing causal inference because they can balance all potential confounding on average. However, they can often suffer from unbalanced covariates for realized treatment assignments. Re
Predict a new response from a covariate is a challenging task in regression, which raises new question since the era of high-dimensional data. In this paper, we are interested in the inverse regression method from a theoretical viewpoint. Theoretical
In the multivariate regression, also referred to as multi-task learning in machine learning, the goal is to recover a vector-valued function based on noisy observations. The vector-valued function is often assumed to be of low rank. Although the mult
We study a functional linear regression model that deals with functional responses and allows for both functional covariates and high-dimensional vector covariates. The proposed model is flexible and nests several functional regression models in the
We consider the problem of designing experiments for the comparison of two regression curves describing the relation between a predictor and a response in two groups, where the data between and within the group may be dependent. In order to derive ef