ترغب بنشر مسار تعليمي؟ اضغط هنا

Yaglom-type limit theorems for branching Brownian motion with absorption

60   0   0.0 ( 0 )
 نشر من قبل Pascal Maillard
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider one-dimensional branching Brownian motion in which particles are absorbed at the origin. We assume that when a particle branches, the offspring distribution is supercritical, but the particles are given a critical drift towards the origin so that the process eventually goes extinct with probability one. We establish precise asymptotics for the probability that the process survives for a large time t, building on previous results by Kesten (1978) and Berestycki, Berestycki, and Schweinsberg (2014). We also prove a Yaglom-type limit theorem for the behavior of the process conditioned to survive for an unusually long time, providing an essentially complete answer to a question first addressed by Kesten (1978). An important tool in the proofs of these results is the convergence of a certain observable to a continuous state branching process. Our proofs incorporate new ideas which might be of use in other branching models.

قيم البحث

اقرأ أيضاً

We consider branching Brownian motion on the real line with absorption at zero, in which particles move according to independent Brownian motions with the critical drift of $-sqrt{2}$. Kesten (1978) showed that almost surely this process eventually d ies out. Here we obtain upper and lower bounds on the probability that the process survives until some large time $t$. These bounds improve upon results of Kesten (1978), and partially confirm nonrigorous predictions of Derrida and Simon (2007).
We consider critical branching Brownian motion with absorption, in which there is initially a single particle at $x > 0$, particles move according to independent one-dimensional Brownian motions with the critical drift of $-sqrt{2}$, and particles ar e absorbed when they reach zero. Here we obtain asymptotic results concerning the behavior of the process before the extinction time, as the position $x$ of the initial particle tends to infinity. We estimate the number of particles in the system at a given time and the position of the right-most particle. We also obtain asymptotic results for the configuration of particles at a typical time.
Motivated by the goal of understanding the evolution of populations undergoing selection, we consider branching Brownian motion in which particles independently move according to one-dimensional Brownian motion with drift, each particle may either sp lit into two or die, and the difference between the birth and death rates is a linear function of the position of the particle. We show that, under certain assumptions, after a sufficiently long time, the empirical distribution of the positions of the particles is approximately Gaussian. This provides mathematically rigorous justification for results in the biology literature indicating that the distribution of the fitness levels of individuals in a population over time evolves like a Gaussian traveling wave.
We consider a critical superprocess ${X;mathbf P_mu}$ with general spatial motion and spatially dependent stable branching mechanism with lowest stable index $gamma_0 > 1$. We first show that, under some conditions, $mathbf P_{mu}(|X_t| eq 0)$ conver ges to $0$ as $tto infty$ and is regularly varying with index $(gamma_0-1)^{-1}$. Then we show that, for a large class of non-negative testing functions $f$, the distribution of ${X_t(f);mathbf P_mu(cdot||X_t| eq 0)}$, after appropriate rescaling, converges weakly to a positive random variable $mathbf z^{(gamma_0-1)}$ with Laplace transform $E[e^{-umathbf z^{(gamma_0-1)}}]=1-(1+u^{-(gamma_0-1)})^{-1/(gamma_0-1)}.$
We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We focus on the super critical case, when the process survives with a positive probability and grows exponentially fast on the nonextinction set. Our main is goal is establish Fourier techniques for this model, which allow to obtain a number of precise estimates related to limit theorems. As a consequence we provide new results concerning central limit theorem, Edgeworth expansions and renewal theorem for $log Z_n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا