ﻻ يوجد ملخص باللغة العربية
In this paper, we first establish a decomposition theorem for size-biased Poisson random measures. As consequences of this decomposition theorem, we get a spine decomposition theorem and a 2-spine decomposition theorem for some critical superprocesses. Then we use these spine decomposition theorems to give probabilistic proofs of the asymptotic behavior of the survival probability and Yagloms exponential limit law for critical superprocesses.
We consider a critical superprocess ${X;mathbf P_mu}$ with general spatial motion and spatially dependent stable branching mechanism with lowest stable index $gamma_0 > 1$. We first show that, under some conditions, $mathbf P_{mu}(|X_t| eq 0)$ conver
We independently assign a non-negative value, as a capacity for the quantity of flows per unit time, with a distribution F to each edge on the Z^d lattice. We consider the maximum flows through the edges of two disjoint sets, that is from a source to
We consider a variant of the randomly reinforced urn where more balls can be simultaneously drawn out and balls of different colors can be simultaneously added. More precisely, at each time-step, the conditional distribution of the number of extracte
In this article, we consider limit theorems for some weighted type random sums (or discrete rough integrals). We introduce a general transfer principle from limit theorems for unweighted sums to limit theorems for weighted sums via rough path techniq
We derive an Ito-formula for the Dawson-Watanabe superprocess, a well-known class of measure-valued processes, extending the classical Ito-formula with respect to two aspects. Firstly, we extend the state-space of the underlying process $(X(t))_{tin