ﻻ يوجد ملخص باللغة العربية
It is believed that satellites of giant planets form in circumplanetary disks. Many of the previous contributions assumed that their formation process proceeds similarly to rocky planet formation, via accretion of the satellite seeds, called satellitesimals. However, the satellitesimal formation itself poses a nontrivial problem as the dust evolution in the circumplanetary disk is heavily impacted by fast radial drift and thus dust growth to satellitesimals is hindered. To address this problem, we connected state-of-the-art hydrodynamical simulations of a circumplanetary disk around a Jupiter-mass planet with dust growth and drift model in a post-processing step. We found that there is an efficient pathway to satellitesimal formation if there is a dust trap forming within the disk. Thanks to the natural existence of an outward gas flow region in the hydrodynamical simulation, a significant dust trap arises at the radial distance of 85~R$_{rm J}$ from the planet, where the dust-to-gas ratio becomes high enough to trigger streaming instability. The streaming instability leads to the efficient formation of the satellite seeds. Because of the constant infall of material from the circumstellar disk and the very short timescale of dust evolution, the circumplanetary disk acts as a satellitesimal factory, constantly processing the infalling dust to pebbles that gather in the dust trap and undergo the streaming instability.
Circumplanetary disks (CPDs) control the growth of planets, supply material for satellites to form, and provide observational signatures of young forming planets. We have carried out two dimensional hydrodynamical simulations with radiative cooling t
I calculate the spectral energy distributions (SEDs) of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at $10^{-10} M_{odot} yr^{-1}$ around a 1 M$_{J}$ planet can be brighter than th
We present Karl G. Jansky Very Large Array (VLA) observations of the 7 mm continuum emission from the disk surrounding the young star LkCa 15. The observations achieve an angular resolution of 70 mas and spatially resolve the circumstellar emission o
We report observations of resolved C2H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array (ALMA). In each case the emission ring is found to arise at the edge of the observable disk o
We investigate the simultaneous evolution of dust and gas density profiles at a radial pressure bump located in a protoplanetary disk. If dust particles are treated as test particles, a radial pressure bump traps dust particles that drift radially in