ترغب بنشر مسار تعليمي؟ اضغط هنا

Shock-driven Accretion in Circumplanetary Disks: Observables and Satellite Formation

126   0   0.0 ( 0 )
 نشر من قبل Zhaohuan Zhu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Circumplanetary disks (CPDs) control the growth of planets, supply material for satellites to form, and provide observational signatures of young forming planets. We have carried out two dimensional hydrodynamical simulations with radiative cooling to study CPDs, and suggested a new mechanism to drive the disk accretion. Two spiral shocks are present in CPDs, excited by the central star. We find that spiral shocks can at least contribute to, if not dominate the angular momentum transport and energy dissipation in CPDs. Meanwhile, dissipation and heating by spiral shocks have a positive feedback on shock-driven accretion itself. As the disk is heated up by spiral shocks, the shocks become more open, leading to more efficient angular momentum transport. This shock driven accretion is, on the other hand, unsteady on a timescale of months/years due to production and destruction of vortices in disks. After being averaged over time, a quasi-steady accretion is reached from the planets Hill radius all the way to the planet surface, and the disk $alpha$-coefficient characterizing angular momentum transport due to spiral shocks is $sim$0.001-0.02. The disk surface density ranges from 10 to 1000 g cm$^{-2}$ in our simulations, which is at least 3 orders of magnitude smaller than the minimum mass sub-nebula model used to study satellite formation; instead it is more consistent with the gas-starved satellite formation model. Finally, we calculate the millimeter flux emitted by CPDs at ALMA and EVLA wavelength bands and predict the flux for several recently discovered CPD candidates, which suggests that ALMA is capable of discovering these accreting CPDs.



قيم البحث

اقرأ أيضاً

It is believed that satellites of giant planets form in circumplanetary disks. Many of the previous contributions assumed that their formation process proceeds similarly to rocky planet formation, via accretion of the satellite seeds, called satellit esimals. However, the satellitesimal formation itself poses a nontrivial problem as the dust evolution in the circumplanetary disk is heavily impacted by fast radial drift and thus dust growth to satellitesimals is hindered. To address this problem, we connected state-of-the-art hydrodynamical simulations of a circumplanetary disk around a Jupiter-mass planet with dust growth and drift model in a post-processing step. We found that there is an efficient pathway to satellitesimal formation if there is a dust trap forming within the disk. Thanks to the natural existence of an outward gas flow region in the hydrodynamical simulation, a significant dust trap arises at the radial distance of 85~R$_{rm J}$ from the planet, where the dust-to-gas ratio becomes high enough to trigger streaming instability. The streaming instability leads to the efficient formation of the satellite seeds. Because of the constant infall of material from the circumstellar disk and the very short timescale of dust evolution, the circumplanetary disk acts as a satellitesimal factory, constantly processing the infalling dust to pebbles that gather in the dust trap and undergo the streaming instability.
63 - J. Szulagyi , L. Mayer , T. Quinn 2016
Circumplanetary disks can be found around forming giant planets, regardless of whether core accretion or gravitational instability built the planet. We carried out state-of-the-art hydrodynamical simulations of the circumplanetary disks for both form ation scenarios, using as similar initial conditions as possible to unveil possible intrinsic differences in the circumplanetary disk mass and temperature between the two formation mechanisms. We found that the circumplanetary disks mass linearly scales with the circumstellar disk mass. Therefore, in an equally massive protoplanetary disk, the circumplanetary disks formed in the disk instability model can be only a factor of eight more massive than their core-accretion counterparts. On the other hand, the bulk circumplanetary disk temperature differs by more than an order of magnitude between the two cases. The subdisks around planets formed by gravitational instability have a characteristic temperature below 100 K, while the core accretion circumplanetary disks are hot, with temperatures even greater than 1000 K when embedded in massive, optically thick protoplanetary disks. We explain how this difference can be understood as the natural result of the different formation mechanisms. We argue that the different temperatures should persist up to the point when a full-fledged gas giant forms via disk instability, hence our result provides a convenient criteria for observations to distinguish between the two main formation scenarios by measuring the bulk temperature in the planet vicinity.
181 - Zhaohuan Zhu 2014
I calculate the spectral energy distributions (SEDs) of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at $10^{-10} M_{odot} yr^{-1}$ around a 1 M$_{J}$ planet can be brighter than th e planet itself. A moderately accreting circumplanetary disk ($dot{M}sim 10^{-8}M_{odot} yr^{-1}$; enough to form a 10 M$_{J}$ planet within 1 Myr) around a 1 M$_{J}$ planet has a maximum temperature of $sim$2000 K, and at near-infrared wavelengths ($J$, $H$, $K$ bands), this disk is as bright as a late M-type brown dwarf or a 10 M$_{J}$ planet with a hot start. To use direct imaging to find the accretion disks around low mass planets (e.g., 1 M$_{J}$) and distinguish them from brown dwarfs or hot high mass planets, it is crucial to obtain photometry at mid-infrared bands ($L$, $M$, $N$ bands) because the emission from circumplanetary disks falls off more slowly towards longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields ($gtrsim$100 G), fields may truncate slowly accreting circumplanetary disks ($dot{M}lesssim10^{-9} M_{odot} yr^{-1}$) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.
104 - Zitao Hu , Xue-Ning Bai 2021
It has recently been shown that the inner region of protoplanetary disks (PPDs) is governed by wind-driven accretion, and the resulting accretion flow showing complex vertical profiles. Such complex flow structures are further enhanced due to the Hal l effect, especially when the background magnetic field is aligned with disk rotation. We investigate how such flow structures impact global dust transport via Monte-Carlo simulations, focusing on two scenarios. In the first scenario, the toroidal magnetic field is maximized in the miplane, leading to accretion and decretion flows above and below. In the second scenario, the toroidal field changes sign across the midplane, leading to an accretion flow at the disk midplane, with decretion flows above and below. We find that in both cases, the contribution from additional gas flows can still be accurately incorporated into the advection-diffusion framework for vertically-integrated dust transport, with enhanced dust radial diffusion up to an effective $alpha^{rm eff}sim10^{-2}$ for strongly coupled dust, even when background turbulence is weak $alpha<10^{-4}$. Dust radial drift is also modestly enhanced in the second scenario. We provide a general analytical theory that accurately reproduces our simulation results, thus establishing a framework to model global dust transport that realistically incorporates vertical gas flow structures. We also note that the theory is equally applicable to the transport of chemical species.
We present Karl G. Jansky Very Large Array (VLA) observations of the 7 mm continuum emission from the disk surrounding the young star LkCa 15. The observations achieve an angular resolution of 70 mas and spatially resolve the circumstellar emission o n a spatial scale of 9 AU. The continuum emission traces a dusty annulus of 45 AU in radius that is consistent with the dust morphology observed at shorter wavelengths. The VLA observations also reveal a compact source at the center of the disk, possibly due to thermal emission from hot dust or ionized gas located within a few AU from the central star. No emission is observed between the star and the dusty ring, and, in particular, at the position of the candidate protoplanet LkCa 15 b. By comparing the observations with theoretical models for circumplanetary disk emission, we find that if LkCa~15~b is a massive planet (>5 M_J) accreting at a rate greater than 1.e-6 M_J yr^{-1}, then its circumplanetary disk is less massive than 0.1 M_J, or smaller than 0.4 Hill radii. Similar constraints are derived for any possible circumplanetary disk orbiting within 45 AU from the central star. The mass estimate are uncertain by at least one order of magnitude due to the uncertainties on the mass opacity. Future ALMA observations of this system might be able to detect circumplanetary disks down to a mass of 5.e-4 M_J and as small as 0.2 AU, providing crucial constraints on the presence of giant planets in the act of forming around this young star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا