ﻻ يوجد ملخص باللغة العربية
We present a detailed investigation of the specific heat in Ca$_3$(Ru$_{1-x}M_x$)$_2$O$_7$ ($M$ = Ti, Fe, Mn) single crystals. With different dopants and doping levels, three distinct regions are present, including a quasi-2D metallic state with an antiferromagnetic (AFM) order formed by ferromagnetic bilayers (AFM-$b$), a Mott insulating state with G-type AFM order (G-AFM) and a localized state with a mixed AFM-b and G-AFM phase. Our specific heat data provide deep insights into the Mott transitions induced by Ti and Mn dopings. We observed not only an anomalous large mass enhancement but also an additional term in the specific heat i.e. $Cpropto T^2$ in the localized region. The $Cpropto T^2$ term is most likely due to the long-wavelength excitations with both FM and AFM components. A decrease of Debye temperature is observed in the G-type AFM region, indicating a lattice softening associated with the Mott transition.
The magnetic and magnetotransport properties of the Sr3Fe2-xCoxO7-d system (0.2 <= x <= 1.0) were systematically investigated. This oxide system exhibits a giant magnetoresistance (GMR) effect at low temperatures, reaching up to 80% in 7 T at 5 K. Ac
We explore the coexistence region in the vicinity of the Mott critical end point employing a compressible cell spin-$1/2$ Ising-like model. We analyze the case for the spin-liquid candidate $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$, where close to the Mot
The metal-insulator transition in correlated electron systems, where electron states transform from itinerant to localized, has been one of the central themes of condensed matter physics for more than half a century. The persistence of this question
The magnetic ground state of (Sr$_{1-x}$Ca$_x$)$_3$Ru$_2$O$_7$ (0 $leq x leq$ 1) is complex, ranging from an itinerant metamagnetic state (0 $leq x <$ 0.08), to an unusual heavy-mass, nearly ferromagnetic (FM) state (0.08 $< x <$ 0.4), and finally to
We study the behavior of fermion liquid defined on hexagonal and triangular lattices with short-range repulsion at half filling. In strong coupling limit the Mott-Hubbard phase state is present, the main peculiarity of insulator state is a doubled ce