ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of giant magnetoresistance effect in the Ruddlesden-Popper phase Sr3Fe2-xCoxO7-d: Predominant role of oxygen nonstoichiometry and magnetic phase separation

179   0   0.0 ( 0 )
 نشر من قبل Teruki Motohashi
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic and magnetotransport properties of the Sr3Fe2-xCoxO7-d system (0.2 <= x <= 1.0) were systematically investigated. This oxide system exhibits a giant magnetoresistance (GMR) effect at low temperatures, reaching up to 80% in 7 T at 5 K. Ac-susceptibility measurements show that there exists a strong competition between ferromagnetic (F) and spin glass states, and the balance between these two magnetic states can be controlled by varying cobalt (x) and/or oxygen contents (d). Importantly, the MR effect is closely related to the magnetic property: the development of magnetic disordering leads to enhancement in the negative MR effect. It is suggested that the compound segregates into F clusters embedded in a non-F matrix, being a naturally occurring analog of the artificial granular-GMR materials, as in the doped perovskite cobaltites, La1-xSrxCoO3 (x < 0.18).

قيم البحث

اقرأ أيضاً

72 - Jin Peng , X. M. Gu , G. T. Zhou 2018
We present a detailed investigation of the specific heat in Ca$_3$(Ru$_{1-x}M_x$)$_2$O$_7$ ($M$ = Ti, Fe, Mn) single crystals. With different dopants and doping levels, three distinct regions are present, including a quasi-2D metallic state with an a ntiferromagnetic (AFM) order formed by ferromagnetic bilayers (AFM-$b$), a Mott insulating state with G-type AFM order (G-AFM) and a localized state with a mixed AFM-b and G-AFM phase. Our specific heat data provide deep insights into the Mott transitions induced by Ti and Mn dopings. We observed not only an anomalous large mass enhancement but also an additional term in the specific heat i.e. $Cpropto T^2$ in the localized region. The $Cpropto T^2$ term is most likely due to the long-wavelength excitations with both FM and AFM components. A decrease of Debye temperature is observed in the G-type AFM region, indicating a lattice softening associated with the Mott transition.
There is a variety of possible ways to tune the optical properties of 2D perovskites, though the mutual dependence between different tuning parameters hinders our fundamental understanding of their properties. In this work we attempt to address this issue for (C$_n$H$_{2n+1}$NH$_3$)$_2$PbI$_4$ (with n=4,6,8,10,12) using optical spectroscopy in high magnetic fields up to 67T. Our experimental results, supported by DFT calculations, clearly demonstrate that the exciton reduced mass increases by around 30% in the low temperature phase. This is reflected by a 2-3 fold decrease of the diamagnetic coefficient. Our studies show that the effective mass, which is an essential parameter for optoelectronic device operation, can be tuned by the variation of organic spacers and/or moderate cooling achievable using Peltier coolers. Moreover, we show that the complex absorption features visible in absorption/transmission spectra track each other in magnetic field providing strong evidence for the phonon related nature of the observed side bands.
Using pulsed laser deposition and a unique fast quenching method, we have prepared SrCoOx epitaxial films on SiTiO3 substrates. As electrochemical oxidation increases the oxygen content from x = 2.75 to 3.0, the films tend to favor the discrete magne tic phases seen in bulk samples for the homologous series SrCoO(3-n/8) (n = 0, 1, 2). Unlike bulk samples, 200nm thick films remain single phase throughout the oxidation cycle. 300 nm films can show two simultaneous phases during deoxidation. These results are attributed to finite thickness effects and imply the formation of ordered regions larger than approximately 300 nm.
112 - Hao Sha , F. Ye , Pengcheng Dai 2008
Neutron scattering has been used to investigate the evolution of the long- and short-range charge-ordered (CO), ferromagnetic (FM), and antiferromagnetic (AF) correlations in single crystals of Pr1-xCaxMnO3. The existence and population of spin clust ers as refected by short-range correlations are found to drastically depend on the doping (x) and temperature (T). Concentrated spin clusters coexist with long-range canted AF order in a wide temperature range in x = 0.3 while clusters do not appear in x = 0.4 crystal. In contrast, both CO and AF order parameters in the x = 0.35 crystal show a precipitous decrease below ~ 35 K where spin clusters form. These results provide direct evidence of magnetic phase separation and indicate that there is a critical doping x_c (close to x = 0.35) that divides the phase-separated site-centered from the homogeneous bond-centered or charge-disproportionated CO ground state.
We study the correlated electronic structure of single-layer iridates based on structurally-undistorted Ba$_2$IrO$_4$. Starting from the first-principles band structure, the interplay between local Coulomb interactions and spin-orbit coupling is inve stigated by means of rotational-invariant slave-boson mean-field theory. The evolution from a three-band description towards an anisotropic one-band ($J=1/2$) picture is traced. Single-site and cluster self-energies are used to shed light on competing Slater- and Mott-dominated correlation regimes. We reveal a clear asymmetry between electron and hole doping, notably in the nodal/anti-nodal Fermi-surface dichotomy at strong coupling. Electron-doped iridates appear comparable to hole-doped cuprates due to the different sign of the next-nearest-neighbor hopping $t$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا