ﻻ يوجد ملخص باللغة العربية
We study the behavior of fermion liquid defined on hexagonal and triangular lattices with short-range repulsion at half filling. In strong coupling limit the Mott-Hubbard phase state is present, the main peculiarity of insulator state is a doubled cell of the lattices. In the insulator state at half filling fermions with momenta $k$ and $k+pi$ are coupled via the effective $lambda$-field, the gap in the spectrum of quasi-particle excitations opens and the Mott phase transition is occured at a critical value of the one-site Hubbard repulsion~$U_c$. $U_c=3.904$ and $U_c=5.125$ are calculated values for hexagonal and triangular lattices, respectively. Depending on the magnitude of the short-range repulsion, the gap in the spectrum and the energy of the ground state are calculated. The proposed approach is universal; it is implemented for an arbitrary dimension and symmetry of the lattice for fermions models with short-range repulsion.
We study the superfluid-insulator transition in Bose-Hubbard models in one-, two-, and three-dimensional cubic lattices by means of a recently proposed variational wave function. In one dimension, the variational results agree with the expected Berez
We investigated the pressure-dependent optical response of the low-dimensional Mott-Hubbard insulator TiOBr by transmittance and reflectance measurements in the infrared and visible frequency range. A suppression of the transmittance above a critical
We study the quantum Hall liquid and the metal-insulator transition in a high mobility two dimensional electron gas, by means of photoluminescence and magneto-transport. In the integer and fractional regime at nu > 1/3, analyzing the emission energy
We apply the density-matrix renormalization group (DMRG) method to a one-dimensional Hubbard model that lacks Umklapp scattering and thus provides an ideal case to study the Mott-Hubbard transition analytically and numerically. The model has a linear
We study the Mott transition in a frustrated Hubbard model with next-nearest neighbor hopping at half-filling. The interplay between interaction, dimensionality and geometric frustration closes the one-dimensional Mott gap and gives rise to a metalli