ﻻ يوجد ملخص باللغة العربية
When combined with the huge collecting area of the ELT, MOSAIC will be the most effective and flexible Multi-Object Spectrograph (MOS) facility in the world, having both a high multiplex and a multi-Integral Field Unit (Multi-IFU) capability. It will be the fastest way to spectroscopically follow-up the faintest sources, probing the reionisation epoch, as well as evaluating the evolution of the dwarf mass function over most of the age of the Universe. MOSAIC will be world-leading in generating an inventory of both the dark matter (from realistic rotation curves with MOAO fed NIR IFUs) and the cool to warm-hot gas phases in z=3.5 galactic haloes (with visible wavelenth IFUs). Galactic archaeology and the first massive black holes are additional targets for which MOSAIC will also be revolutionary. MOAO and accurate sky subtraction with fibres have now been demonstrated on sky, removing all low Technical Readiness Level (TRL) items from the instrument. A prompt implementation of MOSAIC is feasible, and indeed could increase the robustness and reduce risk on the ELT, since it does not require diffraction limited adaptive optics performance. Science programmes and survey strategies are currently being investigated by the Consortium, which is also hoping to welcome a few new partners in the next two years.
We present the consolidated scientific case for multi-object spectroscopy with the MOSAIC concept on the European ELT. The cases span the full range of ELT science and require either high multiplex or high definition observations to best exploit the
MOSAIC is the planned multi-object spectrograph for the 39m Extremely Large Telescope (ELT). Conceived as a multi-purpose instrument, it offers both high multiplex and multi-IFU capabilities at a range of intermediate to high spectral resolving power
There are 8000 galaxies, including 1600 at z larger than 1.6, which could be simultaneously observed in an E-ELT field of view of 40 sq. arcmin. A considerable fraction of astrophysical discoveries require large statistical samples, which can only be
Building on the comprehensive White Paper on the scientific case for multi-object spectroscopy on the European ELT, we present the top-level instrument requirements that are being used in the Phase A design study of the MOSAIC concept. The assembled
We present a discussion of the design issues and trade-offs that have been considered in putting together a new concept for MOSAIC, the multi-object spectrograph for the E-ELT. MOSAIC aims to address the combined science cases for E-ELT MOS that aros