ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating Surveys for ELT-MOSAIC: Status of the MOSAIC Science Case after Phase A

119   0   0.0 ( 0 )
 نشر من قبل Mathieu Puech
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the consolidated scientific case for multi-object spectroscopy with the MOSAIC concept on the European ELT. The cases span the full range of ELT science and require either high multiplex or high definition observations to best exploit the excellent sensitivity and wide field-of-view of the telescope. Following scientific prioritisation by the Science Team during the recent Phase A study of the MOSAIC concept, we highlight four key surveys designed for the instrument using detailed simulations of its scientific performance. We discuss future ways to optimise the conceptual design of MOSAIC in Phase B, and illustrate its competitiveness and unique capabilities by comparison with other facilities that will be available in the 2020s.



قيم البحث

اقرأ أيضاً

When combined with the huge collecting area of the ELT, MOSAIC will be the most effective and flexible Multi-Object Spectrograph (MOS) facility in the world, having both a high multiplex and a multi-Integral Field Unit (Multi-IFU) capability. It will be the fastest way to spectroscopically follow-up the faintest sources, probing the reionisation epoch, as well as evaluating the evolution of the dwarf mass function over most of the age of the Universe. MOSAIC will be world-leading in generating an inventory of both the dark matter (from realistic rotation curves with MOAO fed NIR IFUs) and the cool to warm-hot gas phases in z=3.5 galactic haloes (with visible wavelenth IFUs). Galactic archaeology and the first massive black holes are additional targets for which MOSAIC will also be revolutionary. MOAO and accurate sky subtraction with fibres have now been demonstrated on sky, removing all low Technical Readiness Level (TRL) items from the instrument. A prompt implementation of MOSAIC is feasible, and indeed could increase the robustness and reduce risk on the ELT, since it does not require diffraction limited adaptive optics performance. Science programmes and survey strategies are currently being investigated by the Consortium, which is also hoping to welcome a few new partners in the next two years.
Building on the comprehensive White Paper on the scientific case for multi-object spectroscopy on the European ELT, we present the top-level instrument requirements that are being used in the Phase A design study of the MOSAIC concept. The assembled cases span the full range of E-ELT science and generally require either high multiplex or high definition observations to best exploit the excellent sensitivity and spatial performance of the telescope. We highlight some of the science studies that are now being used in trade-off studies to inform the capabilities of MOSAIC and its technical design.
Building on the experience of the high-resolution community with the suite of VLT high-resolution spectrographs, which has been tremendously successful, we outline here the (science) case for a high-fidelity, high-resolution spectrograph with wide wa velength coverage at the E-ELT. Flagship science drivers include: the study of exo-planetary atmospheres with the prospect of the detection of signatures of life on rocky planets; the chemical composition of planetary debris on the surface of white dwarfs; the spectroscopic study of protoplanetary and proto-stellar disks; the extension of Galactic archaeology to the Local Group and beyond; spectroscopic studies of the evolution of galaxies with samples that, unlike now, are no longer restricted to strongly star forming and/or very massive galaxies; the unraveling of the complex roles of stellar and AGN feedback; the study of the chemical signatures imprinted by population III stars on the IGM during the epoch of reionization; the exciting possibility of paradigm-changing contributions to fundamental physics. The requirements of these science cases can be met by a stable instrument with a spectral resolution of R~100,000 and broad, simultaneous spectral coverage extending from 370nm to 2500nm. Most science cases do not require spatially resolved information, and can be pursued in seeing-limited mode, although some of them would benefit by the E-ELT diffraction limited resolution. Some multiplexing would also be beneficial for some of the science cases. (Abridged)
151 - C. J. Evans , M. Puech , B. Barbuy 2014
Over the past 18 months we have revisited the science requirements for a multi-object spectrograph (MOS) for the European Extremely Large Telescope (E-ELT). These efforts span the full range of E-ELT science and include input from a broad cross-secti on of astronomers across the ESO partner countries. In this contribution we summarise the key cases relating to studies of high-redshift galaxies, galaxy evolution, and stellar populations, with a more expansive presentation of a new case relating to detection of exoplanets in stellar clusters. A general requirement is the need for two observational modes to best exploit the large (>40 sq. arcmin) patrol field of the E-ELT. The first mode (high multiplex) requires integrated-light (or coarsely resolved) optical/near-IR spectroscopy of >100 objects simultaneously. The second (high definition), enabled by wide-field adaptive optics, requires spatially-resolved, near-IR of >10 objects/sub-fields. Within the context of the conceptual study for an ELT-MOS called MOSAIC, we summarise the top-level requirements from each case and introduce the next steps in the design process.
MOSAIC is the planned multi-object spectrograph for the 39m Extremely Large Telescope (ELT). Conceived as a multi-purpose instrument, it offers both high multiplex and multi-IFU capabilities at a range of intermediate to high spectral resolving power s in the visible and the near-infrared. MOSAIC will enable unique spectroscopic surveys of the faintest sources, from the oldest stars in the Galaxy and beyond to the first populations of galaxies that completed the reionisation of the Universe--while simultaneously opening up a wide discovery space. In this contribution we present the status of the instrument ahead of Phase B, showcasing the key science cases as well as introducing the updated set of top level requirements and the adopted architecture. The high readiness level will allow MOSAIC to soon enter the construction phase, with the goal to provide the ELT community with a world-class MOS capability as soon as possible after the telescope first light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا