ﻻ يوجد ملخص باللغة العربية
We present a discussion of the design issues and trade-offs that have been considered in putting together a new concept for MOSAIC, the multi-object spectrograph for the E-ELT. MOSAIC aims to address the combined science cases for E-ELT MOS that arose from the earlier studies of the multi-object and multi-adaptive optics instruments. MOSAIC combines the advantages of a highly-multiplexed instrument targeting single-point objects with one which has a more modest multiplex but can spatially resolve a source with high resolution (IFU). These will span across two wavebands: visible and near-infrared.
There are 8000 galaxies, including 1600 at z larger than 1.6, which could be simultaneously observed in an E-ELT field of view of 40 sq. arcmin. A considerable fraction of astrophysical discoveries require large statistical samples, which can only be
Building on the comprehensive White Paper on the scientific case for multi-object spectroscopy on the European ELT, we present the top-level instrument requirements that are being used in the Phase A design study of the MOSAIC concept. The assembled
MOSAIC is the planned multi-object spectrograph for the 39m Extremely Large Telescope (ELT). Conceived as a multi-purpose instrument, it offers both high multiplex and multi-IFU capabilities at a range of intermediate to high spectral resolving power
Over the past 18 months we have revisited the science requirements for a multi-object spectrograph (MOS) for the European Extremely Large Telescope (E-ELT). These efforts span the full range of E-ELT science and include input from a broad cross-secti
METIS will be among the first generation of scientific instruments on the E-ELT. Focusing on highest angular resolution and high spectral resolution, METIS will provide diffraction limited imaging and coronagraphy from 3-14um over an 20x20 field of v