ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Design of the TolTEC Millimeter-wave Camera

51   0   0.0 ( 0 )
 نشر من قبل Sean Bryan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

TolTEC is a new camera being built for the 50-meter Large Millimeter-wave Telescope (LMT) in Puebla, Mexico to survey distant galaxies and star-forming regions in the Milky Way. The optical design simultaneously couples the field of view onto focal planes at 150, 220, and 280 GHz. The optical design and detector properties, as well as a data-driven model of the atmospheric emission of the LMT site, inform the sensitivity model of the integrated instrument. This model is used to optimize the instrument design, and to calculate the mapping speed as an early forecast of the science reach of the instrument.

قيم البحث

اقرأ أيضاً

Microwave Kinetic Inductance Detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the deve lopment of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-meter Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise $sim$7,000 polarization sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers -- a critical step towards future large-scale experiments with over $10^5$ detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.
Context. The Neel IRAM KIDs Array (NIKA) is a fully-integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. In a first technical run, NIKA was successfully tested in 2009 at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. This prototype consisted of a 27-42 pixel camera imaging at 150 GHz. Subsequently, an improved system has been developed and tested in October 2010 at the Pico Veleta telescope. The instrument upgrades included dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz, faster sampling electronics enabling synchronous measurement of up to 112 pixels per measurement band, improved single-pixel sensitivity, and the fabrication of a sky simulator to replicate conditions present at the telescope. Results. The new dual-band NIKA was successfully tested in October 2010, performing in-line with sky simulator predictions. Initially the sources targeted during the 2009 run were re-imaged, verifying the improved system performance. An optical NEP was then calculated to be around 2 dot 10-16 W/Hz1/2. This improvement in comparison with the 2009 run verifies that NIKA is approaching the target sensitivity for photon-noise limited ground-based detectors. Taking advantage of the larger arrays and increased sensitivity, a number of scientifically-relevant faint and extended objects were then imaged including the Galactic Center SgrB2(FIR1), the radio galaxy Cygnus A and the NGC1068 Seyfert galaxy. These targets were all observed simultaneously in the 150 GHz and 220 GHz atmospheric windows.
Current generation millimeter wavelength detectors suffer from scaling limits imposed by complex cryogenic readout electronics. To circumvent this it is imperative to investigate technologies that intrinsically incorporate strong multiplexing. One po ssible solution is the kinetic inductance detector (KID). In order to assess the potential of this nascent technology, a prototype instrument optimized for the 2 mm atmospheric window was constructed. Known as the Neel IRAM KIDs Array (NIKA), it was recently tested at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. The measurement resulted in the imaging of a number of sources, including planets, quasars, and galaxies. The images for Mars, radio star MWC349, quasar 3C345, and galaxy M87 are presented. From these results, the optical NEP was calculated to be around $1 times 10^{-15}$ W$ / $Hz$^{1/2}$. A factor of 10 improvement is expected to be readily feasible by improvements in the detector materials and reduction of performance-degrading spurious radiation.
The Ultraviolet Transient Astronomical Satellite (ULTRASAT) is a scientific UV space telescope that will operate in geostationary orbit. The mission, targeted to launch in 2024, is led by the Weizmann Institute of Science (WIS) in Israel and the Isra el Space Agency (ISA). Deutsches Elektronen Synchrotron (DESY) in Germany is tasked with the development of the UV-sensitive camera at the heart of the telescope. The cameras total sensitive area of ~90mm x 90mm is built up by four back-side illuminated CMOS sensors, which image a field of view of ~200 deg2. Each sensor has 22.4 megapixels. The Schmidt design of the telescope locates the detector inside the optical path, limiting the overall size of the assembly. As a result, the readout electronics is located in a remote unit outside the telescope. The short focal length of the telescope requires an accurate positioning of the sensors within +-50 mu along the optical axis, with a flatness of +-10 mu. While the telescope will be at around 295K during operations, the sensors are required to be cooled to 200K for dark current reduction. At the same time, the ability to heat the sensors to 343K is required for decontamination. In this paper, we present the preliminary design of the UV sensitive ULTRASAT camera.
The Atacama Cosmology Telescope is a 6-meter telescope designed to map the Cosmic Microwave Background simultaneously at 145 GHz, 215 GHz, and 280 GHz with arcminute resolution. Each frequency will have a 32 by 32 element focal plane array of TES bol ometers. This paper describes the design of the telescope and the cold reimaging optics, which is optimized for millimeter-wave observations with these sensitive detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا