ترغب بنشر مسار تعليمي؟ اضغط هنا

NIKA: A millimeter-wave kinetic inductance camera

244   0   0.0 ( 0 )
 نشر من قبل Loren Swenson
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Current generation millimeter wavelength detectors suffer from scaling limits imposed by complex cryogenic readout electronics. To circumvent this it is imperative to investigate technologies that intrinsically incorporate strong multiplexing. One possible solution is the kinetic inductance detector (KID). In order to assess the potential of this nascent technology, a prototype instrument optimized for the 2 mm atmospheric window was constructed. Known as the Neel IRAM KIDs Array (NIKA), it was recently tested at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. The measurement resulted in the imaging of a number of sources, including planets, quasars, and galaxies. The images for Mars, radio star MWC349, quasar 3C345, and galaxy M87 are presented. From these results, the optical NEP was calculated to be around $1 times 10^{-15}$ W$ / $Hz$^{1/2}$. A factor of 10 improvement is expected to be readily feasible by improvements in the detector materials and reduction of performance-degrading spurious radiation.



قيم البحث

اقرأ أيضاً

Context. The Neel IRAM KIDs Array (NIKA) is a fully-integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. In a first technical run, NIKA was successfully tested in 2009 at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. This prototype consisted of a 27-42 pixel camera imaging at 150 GHz. Subsequently, an improved system has been developed and tested in October 2010 at the Pico Veleta telescope. The instrument upgrades included dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz, faster sampling electronics enabling synchronous measurement of up to 112 pixels per measurement band, improved single-pixel sensitivity, and the fabrication of a sky simulator to replicate conditions present at the telescope. Results. The new dual-band NIKA was successfully tested in October 2010, performing in-line with sky simulator predictions. Initially the sources targeted during the 2009 run were re-imaged, verifying the improved system performance. An optical NEP was then calculated to be around 2 dot 10-16 W/Hz1/2. This improvement in comparison with the 2009 run verifies that NIKA is approaching the target sensitivity for photon-noise limited ground-based detectors. Taking advantage of the larger arrays and increased sensitivity, a number of scientifically-relevant faint and extended objects were then imaged including the Galactic Center SgrB2(FIR1), the radio galaxy Cygnus A and the NGC1068 Seyfert galaxy. These targets were all observed simultaneously in the 150 GHz and 220 GHz atmospheric windows.
We show measurements of thermal kinetic inductance detectors (TKID) intended for millimeter wave cosmology in the 200-300 GHz atmospheric window. The TKID is a type of bolometer which uses the kinetic inductance of a superconducting resonator to meas ure the temperature of the thermally isolated bolometer island. We measure bolometer thermal conductance, time constant and noise equivalent power. We also measure the quality factor of our resonators as the bath temperature varies to show they are limited by effects consistent with coupling to two level systems.
282 - M. Roesch , A. Benoit , A. Bideaud 2012
Lumped-element kinetic inductance detectors(LEKIDs) have recently shown considerable promise as direct absorption mm-wavelength detectors for astronomical applications. One major research thrust within the Neel Iram Kids Array (NIKA) collaboration ha s been to investigate the suitability of these detectors for deployment at the 30-meter IRAM telescope located on Pico Veleta in Spain. Compared to microwave kinetic inductance detectors (MKID), using quarter wavelength resonators, the resonant circuit of a LEKID consists of a discrete inductance and capacitance coupled to a feedline. A high and constant current density distribution in the inductive part of these resonators makes them very sensitive. Due to only one metal layer on a silicon substrate, the fabrication is relatively easy. In order to optimize the LEKIDs for this application, we have recently probed a wide variety of individual resonator and array parameters through simulation and physical testing. This included determining the optimal feed-line coupling, pixel geometry, resonator distribution within an array (in order to minimize pixel cross-talk), and resonator frequency spacing. Based on these results, a 144-pixel Aluminum array was fabricated and tested in a dilution fridge with optical access, yielding an average optical NEP of ~2E-16 W/Hz^1/2 (best pixels showed NEP = 6E-17 W/Hz^1/2 under 4-8 pW loading per pixel). In October 2010 the second prototype of LEKIDs has been tested at the IRAM 30 m telescope. A new LEKID geometry for 2 polarizations will be presented. Also first optical measurements of a titanium nitride array will be discussed.
Microwave Kinetic Inductance Detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the deve lopment of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-meter Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise $sim$7,000 polarization sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers -- a critical step towards future large-scale experiments with over $10^5$ detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.
A prototype of digital frequency multiplexing electronics allowing the real time monitoring of kinetic inductance detector (KIDs) arrays for mm-wave astronomy has been developed. It requires only 2 coaxial cables for instrumenting a large array. For that, an excitation comb of frequencies is generated and fed through the detector. The direct frequency synthesis and the data acquisition relies heavily on a large FPGA using parallelized and pipelined processing. The prototype can instrument 128 resonators (pixels) over a bandwidth of 125 MHz. This paper describes the technical solution chosen, the algorithm used and the results obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا