ﻻ يوجد ملخص باللغة العربية
Photoluminescence spectroscopy measurements are performed on suspended carbon nanotubes in a field-effect configuration, and the gate voltage dependence of photoluminescence spectra are compared for the pristine and the molecularly adsorbed states of the nanotubes. We quantify the molecular screening effect on the trion binding energies by determining the energy separation between the bright exciton and the trion emission energies for the two states. The voltage dependence shows narrower voltage regions of constant photoluminescence intensity for the adsorbed states, consistent with a reduction in the electronic bandgap due to screening effects. The charge neutrality points are found to shift after molecular adsorption, which suggests changes in the nanotube chemical potential or the contact metal work function.
In cavity quantum electrodynamics, optical emitters that are strongly coupled to cavities give rise to polaritons with characteristics of both the emitters and the cavity excitations. We show that carbon nanotubes can be crystallized into chip-scale,
We study theoretically the interactions of excitonic states with surface electromagnetic modes of small-diameter (~1 nm) semiconducting single-walled carbon nanotubes. We show that these interactions can result in strong exciton-surface-plasmon coupl
We propose a framework for inducing strong optomechanical effects in a suspended carbon nanotube based on deformation potential exciton-phonon coupling. The excitons are confined using an inhomogeneous axial electric field which generates optically a
We report that dark excitons can have a large contribution to the emission intensity in carbon nanotubes due to an efficient exciton conversion from a dark state to a bright state. Time-resolved photoluminescence measurements are used to investigate
Carbon nanotubes (CNTs) have recently attracted attention as materials for flexible thermoelectric devices. To provide theoretical guideline of how defects influence the thermoelectric performance of CNTs, we theoretically studied the effects of defe