ﻻ يوجد ملخص باللغة العربية
We report that dark excitons can have a large contribution to the emission intensity in carbon nanotubes due to an efficient exciton conversion from a dark state to a bright state. Time-resolved photoluminescence measurements are used to investigate decay dynamics and diffusion properties of excitons, and we obtain intrinsic lifetimes and diffusion lengths of bright excitons as well as diffusion coefficients for both bright and dark excitons. We find that the dark-to-bright transition rates can be considerably high, and that more than half of the dark excitons can be transformed into the bright excitons. The state transition rates have a large chirality dependence with a family pattern, and the conversion efficiency is found to be significantly enhanced by adsorbed air molecules on the surface of the nanotubes. Our findings show the nontrivial significance of the dark excitons on the emission kinetics in low dimensional materials, and demonstrate the potential for engineering the dark-to-bright conversion process by using surface interactions.
We study theoretically the interactions of excitonic states with surface electromagnetic modes of small-diameter (~1 nm) semiconducting single-walled carbon nanotubes. We show that these interactions can result in strong exciton-surface-plasmon coupl
We propose a framework for inducing strong optomechanical effects in a suspended carbon nanotube based on deformation potential exciton-phonon coupling. The excitons are confined using an inhomogeneous axial electric field which generates optically a
We show that the absorption spectrum in semiconducting nanotubes can be determined using the bosonization technique combined with mean-field theory and a harmonic approximation. Our results indicate that a multiple band semiconducting nanotube reduce
The efficiencies of photonic devices are primarily governed by radiative quantum efficiency, which is a property given by the light emitting material. Quantitative characterization for carbon nanotubes, however, has been difficult despite being a pro
In cavity quantum electrodynamics, optical emitters that are strongly coupled to cavities give rise to polaritons with characteristics of both the emitters and the cavity excitations. We show that carbon nanotubes can be crystallized into chip-scale,