ﻻ يوجد ملخص باللغة العربية
We propose a framework for inducing strong optomechanical effects in a suspended carbon nanotube based on deformation potential exciton-phonon coupling. The excitons are confined using an inhomogeneous axial electric field which generates optically active quantum dots with a level spacing in the milli-electronvolt range and a characteristic size in the 10-nanometer range. A transverse field induces a tunable parametric coupling between the quantum dot and the flexural modes of the nanotube mediated by electron-phonon interactions. We derive the corresponding excitonic deformation potentials and show that this interaction enables efficient optical ground-state cooling of the fundamental mode and could allow us to realise the strong and ultra-strong coupling regimes of the Jaynes-Cummings and Rabi models.
Current-voltage characteristics of suspended single-wall carbon nanotube quantum dots show a series of steps equally spaced in voltage. The energy scale of this harmonic, low-energy excitation spectrum is consistent with that of the longitudinal low-
Transport in suspended metallic single wall carbon nanotubes in the presence of strong electron-electron interaction is investigated. We consider a tube of finite length and discuss the effects of the coupling of the electrons to the deformation pote
We study theoretically the interactions of excitonic states with surface electromagnetic modes of small-diameter (~1 nm) semiconducting single-walled carbon nanotubes. We show that these interactions can result in strong exciton-surface-plasmon coupl
The electronic Raman scattering (ERS) features of single-walled carbon nanotubes (SWNTs) can reveal a wealth of information about their electronic structures, but have previously been thought to appear exclusively in metallic (M-) but not in semicond
We present a simple technique which uses a self-aligned oxide etch to suspend individual single-wall carbon nanotubes between metallic electrodes. This enables one to compare the properties of a particular nanotube before and after suspension, as wel