ﻻ يوجد ملخص باللغة العربية
Ultrafunctions are a particular class of generalized functions defined on a hyperreal field $mathbb{R}^{*}supsetmathbb{R}$ that allow to solve variational problems with no classical solutions. We recall the construction of ultrafunctions and we study the relationships between these generalized solutions and classical minimizing sequences. Finally, we study some examples to highlight the potential of this approach.
Splines come in a variety of flavors that can be characterized in terms of some differential operator L. The simplest piecewise-constant model corresponds to the derivative operator. Likewise, one can extend the traditional notion of total variation
Let $Sinmathcal{M}_d(mathbb{C})^+$ be a positive semidefinite $dtimes d$ complex matrix and let $mathbf a=(a_i)_{iinmathbb{I}_k}in mathbb{R}_{>0}^k$, indexed by $mathbb{I}_k={1,ldots,k}$, be a $k$-tuple of positive numbers. Let $mathbb T_{d}(mathbf a
In this work we continue our research on nonharmonic analysis of boundary value problems as initiated in our recent paper (IMRN 2016). There, we assumed that the eigenfunctions of the model operator on which the construction is based do not have zero
In this paper we present the groundwork for an It^o/Malliavin stochastic calculus and Hidas white noise analysis in the context of a supersymmentry with Z3-graded algebras. To this end we establish a ternary Fock space and the corresponding strong al
It is shown that generalized trigonometric functions and generalized hyperbolic functions can be transformed from each other. As an application of this transformation, a number of properties for one immediately lead to the corresponding properties fo